
Compile Met.3D from source code: Linux (Ubuntu/SuSE)

This page provides installation guidelines for installing Met.3D on and Linux systems using the build system. Met.3D requires a openSUSE Ubuntu cmake
number of libraries to be installed and a few external data packages to be downloaded. Most of these packages can be installed via the respective system
package managers (or), however, a few have to be downloaded and compiled manually.YaST aptitude

System requirements: You will need an OpenGL 4.3 capable graphics card and an appropriate Linux driver to run Met.3D. The driver will most likely be a
proprietary driver (Nvidia or AMD); open-source drivers for Linux currently do not provide the required capabilities. Before you continue with the installation,
make sure that graphics card and driver are installed. If everything is installed correctly, the command should output something similar to (the glxinfo
important thing is the version > 4.3): OpenGL core profile

glxinfo | grep OpenGL

OpenGL vendor string: NVIDIA Corporation
OpenGL renderer string: GeForce GTX TITAN/PCIe/SSE2
OpenGL core profile version string: 4.4.0 NVIDIA 340.96
OpenGL core profile shading language version string: 4.40 NVIDIA via Cg compiler

Install available dependencies via your package manager

openSUSE

For openSUSE 15.0, the following additional repository is required to obtain the ECMWF eccodes library (similar for other openSUSE versions):

http://download.opensuse.org/repositories/home:/SStepke/openSUSE_Leap_15.0/

The repository can be added in the “Software Repositories” windows in YaST. Afterwards, the following packages can be installed in the “Software
Management” window (or on the command line).

libqt5-qtbase-devel (or, for Met.3D versions < 1.3: libqt4 and libqt4-devel) - and further packages for Qt5 development
liblog4cplus-### and log4cplus-devel
gdal, libgdal20 and gdal-devel
netcdf, netcdf-devel, libnetcdf_c++4-devel, libnetcdf_c++4-1
hdf5, libhdf5 and hdf5-devel
glew and glew-devel
libfreetype6 and freetype2-devel
eccodes and eccodes-devel (or, for Met.3D versions < 1.3: grib_api and grib_api-devel)
libGLU1

Recommended way for compiling Met.3D: conda environment

This page provides old installation guidelines to compile Met.3D from source on openSuSE and Ubuntu Linux systems using a development
environment installed from the system repositories. We have switched entirely to using conda environments for developing and building Met.3D,
and we . This page is kept for reference.recommend using conda instead

Note

The current versions of require version 8 or higher, which may need to be installed manually. We recommend Met.3D 1.7 and higher libproj
using .conda

The following installation guidelines have been tested with the older under and . Still, Met.3D 1.6 openSUSE 15.0/15.1 Ubuntu 18.04/20.04 LTS
try using if possible.conda

I know what I am doing!

I know what I am doing!

If you are experienced with compiling software under Linux, have a look at the listing at the bottom of this page - it lists all commands necessary
to compile Met.3D on a clean Ubuntu system. Other systems will be similar.

Note

If you have available on your system, you can test the Met.3D compilation using a Docker image. An example using an Ubuntu image is Docker
provided at the end of this page.

https://software.opensuse.org
http://releases.ubuntu.com/
https://cmake.org/
http://yast.github.io/
https://help.ubuntu.com/lts/serverguide/aptitude.html
http://download.opensuse.org/repositories/home:/SStepke/openSUSE_Leap_15.0/
https://collaboration.cen.uni-hamburg.de/pages/viewpage.action?pageId=43712605
https://collaboration.cen.uni-hamburg.de/pages/viewpage.action?pageId=43712605
https://collaboration.cen.uni-hamburg.de/pages/viewpage.action?pageId=43712605
https://docs.docker.com/

gsl and gsl-devel
libproj##
software development basics (gcc, gcc-fortran, git, wget, zip)

Ubuntu

For Ubuntu 18.04/20.04, the following packages need to be installed via aptitude:

qt5-default
liblog4cplus-dev
libgdal-dev
libnetcdf-dev
libnetcdf-c++4-dev
libeccodes-dev
libfreetype6-dev
libgsl-dev
libglew-dev
libproj-dev
software development basics (packages build-essential, gfortran, git, wget, zip)

Install remaining required libraries from their sources
The dependencies and are for both systems not available (at least not in the requried versions). They need to be complied manually.glfx qcustomplot

glfx

Get the glfx sources from or https://code.google.com/p/glfx/ https://github.com/maizensh/glfx.git

cd glfx
cmake -DCMAKE_INSTALL_PREFIX:PATH=/your/target/dir CMakeLists.txt
make -j 12
make install

To make it easier for cmake for Met.3D to automatically find the libraries, choose one directory from as /your/target/dir.cmake/common_settings.cmake

qcustomplot

qcustomplot is required in a version >= 2.0. Get the qcustomplot sources from http://www.qcustomplot.com/

You will need the archives and for version >= 2.0.QCustomPlot.tar.gz QCustomPlot-sharedlib.tar.gz

Extract the archive (the directory) and put the contents of the QCustomPlot.tar.gz /qcustomplot QCustomPlot-sharedlib.tar.gz inside /qcu
 directory. Go tostomplot

qcustomplot/qcustomplot-sharedlib/sharedlib-compilation

and run:

qmake # (on openSUSE, this may be qmake-qt5)
make

Next, copy the resulting libraries and the qcustomplot.h header to directories where cmake for Met.3D can find them automatically (look at cmake
). These files are required:/common_settings.cmake

Note

Install both libraries to places where cmake for Met.3D can find them (in the commands listed below). If you are unsure, /your/target/dir
use a subdirectory of the directory introduced in the next section, e.g. .met-3d-base ~\met.3d-base\local

https://code.google.com/p/glfx/
https://github.com/maizensh/glfx.git
http://www.qcustomplot.com/

./include:
qcustomplot.h

./lib or ./lib64:
libqcustomplotd.so -> libqcustomplotd.so.2.0.0*
libqcustomplotd.so.2 -> libqcustomplotd.so.2.0.0*
libqcustomplotd.so.2.0 -> libqcustomplotd.so.2.0.0*
libqcustomplotd.so.2.0.0*
libqcustomplot.so -> libqcustomplot.so.2.0.0*
libqcustomplot.so.2 -> libqcustomplot.so.2.0.0*
libqcustomplot.so.2.0 -> libqcustomplot.so.2.0.0*
libqcustomplot.so.2.0.0*

Alternatively, the sources are available from the git repository at If you fetch the code from the repository, you’https://gitlab.com/DerManu/QCustomPlot.git
ll also need to run . See the Docker Ubuntu example at the end of this page.run-amalgamate.sh

Download source and data packages
We recommend to place the following packages along with the Met.3D sources into a specific directory structure.

Create a base directory and a subdirectory :met.3d-base third-party

met.3d-base/
 third-party/

Change into to execute the following commands.third-party

1) qtpropertybrowser

Met.3D requires the qtpropertybrowser framework from the “qt-solutions” repository. The qtpropertybrowser sources are directly compiled into the Met.3D
executable and hence do not have to be build beforehand. They can be downloaded with git:

[in met.3d-base/third-party]
git clone https://github.com/qtproject/qt-solutions.git

2) Fonts

Met.3D requires a TrueType font file. We recommend the “FreeSans” font from the GNU FreeFont package. It can be downloaded from http://ftp.gnu.org
. At the time of writing, the most recent version is 20120503:/gnu/freefont/

[in met.3d-base/third-party]
wget http://ftp.gnu.org/gnu/freefont/freefont-ttf-20120503.zip
unzip freefont-ttf-20120503.zip

3) Vector and raster map, coastline and country borderline data

Met.3D requires a base map image in GeoTIFF format, as well as coastline and country borderline vector data in shapefile format. we recommend to use
the free data from . The medium resolution files (50m) work fine (they require roughly 300 MB of disk space).http://www.naturalearthdata.com

For coastline data, we use the “Coastline” dataset ():http://www.naturalearthdata.com/downloads/50m-physical-vectors/

[in met.3d-base/third-party]
mkdir naturalearth
cd naturalearth
wget http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/50m/physical/ne_50m_coastline.zip
unzip ne_50m_coastline.zip

For country boundaries, we use the “Admin 0 – Boundary Lines” dataset ():http://www.naturalearthdata.com/downloads/50m-cultural-vectors/

https://gitlab.com/DerManu/QCustomPlot.git
http://ftp.gnu.org/gnu/freefont/
http://ftp.gnu.org/gnu/freefont/
http://www.naturalearthdata.com
http://www.naturalearthdata.com/downloads/50m-physical-vectors/
http://www.naturalearthdata.com/downloads/50m-cultural-vectors/

[in met.3d-base/third-party/naturalearth]
wget http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/50m/cultural
/ne_50m_admin_0_boundary_lines_land.zip
unzip ne_50m_admin_0_boundary_lines_land.zip

For the raster basemap, we use the “Cross Blended Hypso with Shaded Relief and Water” dataset (http://www.naturalearthdata.com/downloads/50m-
):raster-data/50m-cross-blend-hypso/

[in met.3d-base/third-party/naturalearth]
wget http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/50m/raster/HYP_50M_SR_W.zip
unzip HYP_50M_SR_W.zip

You should now have the following directory structure (denotes other files):...

met.3d-base/
 third-party/
 qt-solutions/
 qtpropertybrowser/
 *
 ...
 freefont-20120503/
 FreeSans.ttf
 ...
 naturalearth/
 HYP_50M_SR_W/
 HYP_50M_SR_W.tif
 ...
 ne_50m_coastline.shp
 ne_50m_admin_0_boundary_lines_land.shp
 ...

Checkout Met.3D from the GIT repository
The latest version of Met.3D can be checked out from https://gitlab.com/wxmetvis/met.3d/

Place the repository into the base directory:met.3d-base

[in met.3d-base]
git clone https://gitlab.com/wxmetvis/met.3d.git

This will checkout the latest development version. Alternatively, checkout the latest “stable” version by selecting the latest tag:

[in met.3d-base]
cd met.3d
git tag -l
git checkout tags/<latest tag>

For example, if returns a list in which is the latest tag, checkout this version by entering . git tag -l 1.3.0 git checkout tags/1.3.0

Configure cmake for Met.3D
We provide cmake scripts for Makefile creation and compilation of Met.3D. You can either build Met.3D from the command line as described below, or use
a cmake GUI (e.g., ,) to configure cmake. Alternatively, start the build process within C++ IDEs like QtCreator, CLion, or cmake-curses-gui cmake-gui
Visual Studio Code (these typically provide functionality to open and to run the build process).CMakeLists.txt

From the command line:

First, in , create a subdirectory into which the executable can be built and change into this directory:met.3d-base/ build

http://www.naturalearthdata.com/downloads/50m-raster-data/50m-cross-blend-hypso/
http://www.naturalearthdata.com/downloads/50m-raster-data/50m-cross-blend-hypso/
https://gitlab.com/wxmetvis/met.3d/

[in met.3d-base]
mkdir build
cd build

Create a by:Makefile

[in met.3d-base/build]
cmake -DCMAKE_BUILD_TYPE=RELEASE ../met.3d

Met.3D can also be built in ; change to to achieve this.debug mode -DCMAKE_BUILD_TYPE=RELEASE -DCMAKE_BUILD_TYPE=DEBUG

If some libraries are not located within the default header/library folders (given in common_settings.cmake), it is likely that you have to manually set the
include directory and used libraries for a certain package. For example, if cmake could not find the include directory of GDAL, it will output something like m

. In that case, add to the command and run cmake again. Or issing GDAL_INCLUDE_DIR -DGDAL_INCLUDE_DIR=/real/path/to/gdal/includes
use the GUI to set the missing directories and libraries and restart the configuring and generation process.

Compile Met.3D
After cmake has created the , run make (the “-j 12” option for make starts 12 parallel compilation threads, modify this number to match the Makefile
number of CPU cores in your system).

[in met.3d-base/build]
make -j 12

Compilation may take a few minutes. If no errors are reported, an executable named should be created in the build directory.Met3D

Start Met.3D
Before Met.3D can be started, two environment variables and need to be set. points to the Met.3D source MET3D_HOME MET3D_BASE MET3D_HOME
directory (at least the subdirectories and need to be available as these contain code loaded at runtime):/src/glsl /config

export MET3D_HOME=/your/path/to/met.3d-base/met.3d

The additional environment variable is used in the default configuration files to refer to the paths with third-party data (see MET3D_BASE /config
; feel free to change this if you like):/default_frontend.cfg.template

export MET3D_BASE=/your/path/to/met.3d-base

To start Met.3D, simply type:

[e.g. in met.3d-base/build]
./Met3D

Test compilation in a Docker container
In case you have Docker available on your system, you can test the compilation of Met.3D in a container. The following commands start an Ubuntu 18.04
container, install all dependencies and compile Met.3D. You won’t be able to start Met.3D from the container, but the commands may be useful for tests or
to install on your actual system.

To download and start the container:

Note

On first start-up, you will see an empty window. Please follow the user guide to learn how to create visualizations.

docker info # make sure Docker is running
docker pull ubuntu:latest # download Ubuntu image
docker run -t -i ubuntu bash # start container

Within the container, to set up the system and compile Met.3D:

update repositories and upgrade current system
apt update
apt upgrade

install gcc compiler suite, see https://help.ubuntu.com/community/InstallingCompilers
apt install build-essential

install required development tools
apt install cmake git wget zip gfortran

section A), install the required dependencies (to list dependencies of a package use "apt depends <name>")
"-dev" packages also install the corresponding libraries
apt install qt5-default liblog4cplus-dev libgdal-dev libnetcdf-dev libnetcdf-c++4-dev libeccodes-dev
libfreetype6-dev libgsl-dev libglew-dev libproj-dev

section B), create "met.3d-base" directory and install the two remaining libraries "glfx" and "qcustomplot"
cd ~
mkdir met.3d-base && cd met.3d-base
mkdir local
mkdir third-party && cd third-party

git clone https://github.com/maizensh/glfx.git
cd glfx
cmake -DCMAKE_INSTALL_PREFIX:PATH=~/met.3d-base/local CMakeLists.txt
make -j 12
make install

cd ~/met.3d-base/third-party
git clone https://gitlab.com/DerManu/QCustomPlot.git
cd QCustomPlot
./run-amalgamate.sh
cp qcustomplot.h ~/met.3d-base/local/include/
cd sharedlib/sharedlib-compilation/
qmake
make -j 12
cp libqcustomplot* ~/met.3d-base/local/lib/

section C), download remaining third-party dependencies
cd ~/met.3d-base/third-party
git clone https://github.com/qtproject/qt-solutions.git

wget http://ftp.gnu.org/gnu/freefont/freefont-ttf-20120503.zip
unzip freefont-ttf-20120503.zip

mkdir naturalearth
cd naturalearth wget https://naciscdn.org/naturalearth/50m/physical/ne_50m_coastline.zip
unzip ne_50m_coastline.zip
wget https://naciscdn.org/naturalearth/50m/cultural/ne_50m_admin_0_boundary_lines_land.zip
unzip ne_50m_admin_0_boundary_lines_land.zip
wget https://naciscdn.org/naturalearth/50m/raster/HYP_50M_SR_W.zip
unzip HYP_50M_SR_W.zip

sections D)-F), checkout and compile Met.3D
cd ~/met.3d-base/
git clone https://gitlab.com/wxmetvis/met.3d.git
mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=RELEASE ../met.3d
make -j 12

now a binary "Met3D" should have been created

	Compile Met.3D from source code: Linux (Ubuntu/SuSE)

