

Speed-of-light Seismology

Detection of Prompt Earthquake Gravity Signals

Jean-Paul Montagner (IPG-Paris),

Jean-Paul Ampuero (IRD, Nice), Matteo Barsuglia (APC-U. Paris), Pascal Bernard, Kevin Juhel (IPGP-APC),

Giovanni Losurdo (INFN, Pisa, Italy), Martin Vallée (IPG-Paris)

Eric Chassande-Mottin (APC), Donatella Fiorucci, Jan Harms (INFN, Italy), Bernard Whiting (U. Florida)

Outline: The story and the approach

normal mode calculation

120

120

60°

60

Motivation (2012)

VIRGO

(Gravitational wave Interferometer)

- Search for « instantaneous » gravity signal
 - a) Very Large earthquakes:
 - Sumatra (9.3; 26/12/04), Chile-Maule (8.8; 2

b) Instruments: Superconducting gravimeter, very broadband seismometers STS1

30°

20

- Static and transient gravity anomalies (Okubo, 1991, 1992; Imanishi et al., 2004)
- Search for a prompt gravity signal: Kamioka SG data Statistical tests (Montagner et al., Nature Com., 2016)
- Controversy (Heaton, Nature Com., 2017)
- Broadband seismic data (Vallée et al., Science, 2017, Vallée and Juhel, JGR, 2019)
- Perspectives and ongoing projects : EEWS (Earthquake Early Warning Systems) (Juhel et al., JGR, 2018)
- PEGASEWS: Prompt Earthquake Gravity Anomalies: Seismic Early Warning System

Braviationnal change generated by Toho

pture signal

A ES

A MA

140°

135°

11)

- 30°

LABEX UnivEarthS (2012)- Geophysics Gravitational wave interferometers: VIRGO

VIRGO (Italian – French Gravitational wave detector)

Motivation NORMAL MODE THEORY

Theoretical signal Before P-arrival: 0.03 µgal= 0.3nm/s² Very small

 $1 \mu gal = 10^{-8} m/s^2 = 10 nm/s^2$

Motivation NORMAL MODE THEORY

4

m.s

Gravity perturbations induced by earthquakes?

Gravity perturbations induced by earthquakes

-Mass redistribution $-\nabla (\rho_0 \mathbf{u})$ -Free air gravity anomaly (perturbation of the Earth surface) - Okubo, 1991, 1992, ...

Theoretical Approach -direct numerical calculations (plane case): (Harms et al., GJI, 2015, 2016) (Vallée et al., Science, 2017) -Normal mode Theory (spherical case) (Juhel et al., 2019)

Static gravity changes induced by earthquakes already measured

 Ground-based stations: Superconducting gravimeters after large earthquakes

(2003 M=8.0 Tokachi-oki earthquake)

• GRACE / GOCE satellites

gravity changes after versus before large earthquakes (2011 M9.0 Tohoku-oki earthquake)

Outline: The story and the approach

Motivation (2012)
VIRGO
(Gravitational wave
Interferometer)

Search for « instantaneous » gravity signal
 a) Very Large earthquakes:

Sumatra (9.3; 26/12/04), Chile-Maule (8.8; 27/02/2010), Japan-Tohoku (9.0:-; 11/03/2011) b) Instruments: Superconducting gravimeter, very broadband seismometers STS1

• Static and transient gravity anomalies (Okubo, 1991, 1992; Imanishi et al., 2004)

Search for a prompt gravity signal: Kamioka SG data

(Montagner et al., Nature Com., 2016)

- Controversy (Heaton, Nature Com., 2017)
- Broadband seismic data (Vallée et al., Science, 2017, Vallée and Juhel, JGR, 2019)
- Perspectives and ongoing projects : EEWS (Earthquake Early Warning Systems) (Juhel et al., JGR, 2018)
- PEGASEWS: Prompt Earthquake Gravity Anomalies: Seismic Early Warning System

The choice of Kamioka SG (superconducting gravimeter) data for Tohoku-oki Earthquake

WHY KAMIOKA?

- Not far from Tohoku earthquake epicenter (~500km)

- Excellent station (installed in a mine) with a low noise level $(1nGal = 10^{-11} \text{ m/s}^2)$ Kamiokande Observatory

- Superconducting gravimeters are so far the best instruments measuring the Earth gravity field
- Station operated in the framework of GGP (Global Geodynamics Project)
- Continuous data recording at 1sps (1Hz), on contrast with other SG instruments (1spm ≈ 0.0167Hz)
- Data easily accessible (thanks to Dr. Tamiura)

-oki earthquake

Transient gravity changes induced by earthquakes?

28 March 2023

From Static to Dynamic gravity changes induced by earthquakes

Superconducting gravimeter Kamioka +Broadband Japanese network F-NET (STS1, STS2...)

Speed-of-light signal: Stack of Japanese F-NET broadband data + Kamioka SG

Outline: The story and the approach

• Motivation (2012)

VIRGO (Gravitational wave Interferometer)

- Search for « instantaneous » gravity signal
 - a) Very Large earthquakes: ² Sumatra (9.3; 26/12/04), Chile-Maule (8.8; 1

• Search for a prompt gravity signal: Kamioka SG data

Statistical tests (Montagner et al., Nature Com., 2016)

normal mode calculation

120

60

11)

•Controversy (Heaton, Nature Com., 2017)

• Static and transient gravity anomalies (Okubo, 1991, 1992; Imanishi et al., 2004)

• Broadband seismic data (Vallée et al., Science, 2017, Vallée and Juhel, JGR, 2019)

20

b) Instruments: Superconducting gravimeter, very broadband seismometers STS1

- Perspectives and ongoing projects : EEWS (Earthquake Early Warning Systems) (Juhel et al., JGR, 2018)
- PEGASEWS: Prompt Earthquake Gravity Anomalies: Seismic Early Warning System

Insights from the set of self-gravitating equations

$$\begin{split} & \overset{\circ}{\rho}_{0} \ddot{\mathbf{u}} &= \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} + \Delta \rho \, \mathbf{g}_{0} + \boldsymbol{f} + \rho_{0} \, \Delta \mathbf{g} \,, & \text{Force balance equation} \\ & \nabla \cdot \Delta \mathbf{g} &= -4\pi G \, \Delta \rho \,, & \text{Poisson equation} \\ & \Delta \rho &= -\nabla \cdot (\rho_{0} \, \mathbf{u}) \,, & \text{Continuity equation} \end{split}$$

In this general formulation, there is a **full coupling** between the gravitational perturbation Δg and the displacement **u**

Insights from the set of self-gravitating equations

$$\overset{\circ}{\rho_0} \ddot{\mathbf{u}} = \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} + \Delta \rho \, \mathbf{g_0} + \boldsymbol{f} + \rho_0 \, \Delta \mathbf{g} \,, \qquad \text{Force balance equation}$$

$$\nabla \cdot \Delta \mathbf{g} = -4\pi G \, \Delta \rho \,, \qquad \qquad \text{Poisson equation}$$

$$\Delta \rho = -\nabla \cdot (\rho_0 \, \mathbf{u}) \,, \qquad \qquad \text{Continuity equation}$$

In this general formulation, there is a full coupling between the gravitational perturbation Δg and the displacement u

Illustration of the modeling approach (Vallée et al., 2017)

Courtesy of Martin Vallée Signal amplitude versus epicentral distance just before P-arrival

FDSN stations (IRIS or GEOSCOPE) + F-NET (Japan) 0.002-0.03Hz frequency range

Relative amplitudes between the pre-P and the post-P signals

Pre-P signals are 10⁵ to 10⁶ smaller

Vallée et al., Science, 2017

Complete simulation at all stations

New detection of PEGS (prompt elasto-gravity signals) for other earthquakes

Vallée & Juhel, 2019

Outline: The story and the approach

normal mode calculation

120

120°

60°

• Motivation (2012)

VIRGO (Gravitational wave Interferometer)

- Search for « instantaneous » gravity signal
 - a) Very Large earthquakes:
 - Sumatra (9.3; 26/12/04), Chile-Maule (8.8; 1

b) Instruments: Superconducting gravimeter, very broadband seismometers STS1

20

- Static and transient gravity anomalies (Okubo, 1991, 1992; Imanishi et al., 2004)
- Search for a prompt gravity signal: Kamioka SG data
- Statistical tests (Montagner et al., Nature Com., 2016)
- Controversy (Heaton, Nature Com., 2017)
- Broadband seismic data (Vallée et al., Science, 2017, Vallée and Juhel, JGR, 2019)

Perspectives and ongoing projects : EEWS (Earthquake Early Warning Systems)

•PEGASEWS: Prompt Earthquake Gravity Anomalies: Seismic Early Warning System

Earthquake early-warning systems

For example (for some densities): P-waves ~ 5 km/s S-waves~ 2.5 km/s

Benefits of early-warning systems

Control factory lines

Prevent traffic accidents

Permit individual protection

Alert schools and meetings

Control lifts

People executing dangerous work

Credit: Jan Harms 28 March 2023

SEARCH FOR DETECTABILITY OF PEGS WITH VERY BROADBAND SEISMOMETERS HOW CAN WE USE PEGS FOR EARLY MAGNITUDE ESTIMATE IN AN EEWS?

PEGS: prompt elastogravity signals; EEWS: earthquake early warning system

PEGSNet : the training database

Few real observations of PEGS are available : training must rely on synthetic data.

- Real noise added to synthetic PEGS
- 500k synthetic earthquake sources
- Location, dip and strike from Slab2.0 (Hayes et al. 2018)
- M_w follows uniform distribution U [5.5, 10.0]
- STF empirical model (Meier et al. 2017)

Licciardi, Bletery, Rouet-Leduc et al., Nature, 2022

PEGSNet : architecture and learning strategy

Architecture (Convolutional Neural Network)

- T₁ is randomly chosen during training.
- The value of M_w at the end of the input window is used as label.
- The model learns patterns in the data as M_w evolves with time.
- The model is designed to track the evolving magnitude and not to forecast its value.

Synthetic tests on M_w 9 earthquakes

Performance on the Tohoku-Oki earthquake

Results on test set : low noise conditions (0.5 nm/s^2)

Successful prediction if the estimated $M_w(t)$ lies within ± 0.4 magnitude units from the ground truth value.

Early response of a seismometer vs. a gravity strainmeter

Now : PEGS

In the future : PGS

Gravitational acceleration : $\boldsymbol{a}(\boldsymbol{r},t) = \delta \boldsymbol{g}(\boldsymbol{r},t) - \ddot{\boldsymbol{u}}(\boldsymbol{r},t)$

- background seismic noise
- compensation between δg and \ddot{u}

Gravity strain :
$$h(r, t) = \int_0^t \int_0^{\tau'} \nabla \delta g(r, \tau) \ d\tau d\tau'$$

- noise reduction
- ü no longer recorded

NEED FOR NEW INSTRUMENTS (gradient of the gravity field **\nabla g**)

Sub-Hz gravitational –wave detection

1) Superconducting gradiometers

2) Atom interferometers

3) Torsion bar antennas (Collaboration with Univ. Tokyo)

PEGASEWS detector

Prompt Earthquake Gravity Anomalies- Early Warning System

 (\pm)

Tidal forces by

compressed

Seismic waves

Earthquake

dilatated

Θ

Gravity strainmeter

Gravity gradient perturbation

Gravity-induced motion no longer recorded !

28 March 2023

Gravitational wave detectors: TOBA

TOBA concept (torsion-bar antenna)-University of Tokyo Ando et al (2010) Devices designed to measure gravitational waves, minute distortions of space-time that are predicted by Einstein's theory of general relativity Max Sensitivity 0.1Hz (seismic band)

Present sensitivity 10⁻⁸

=> goal **PEGASEWS** 10⁻¹⁵ √Hz

Barsuglia et al. 2018

LABEX UnivEarthS (2012)- Geophysics Gravitational wave interferometers: VIRGO

VIRGO (Italian – French Gravitational wave detector)

Read-out system of PEGASEWS: APC

4 Fabry-Perot cavities

Conceptual scheme of the vibration isolation to be developed for PEGASEWS: INFN

ID	LEGENDA		
v	Vacuum Chamber		
V-1	Thermal Insulation		90
1	Safety-Frame		
2	Inertial Platform		
3	Inverted Pendulum		4b 1m
4, 4b	Suspension Top-Stage	√-1+	3
5	Suspension Steering Stage (Marionette)		
6	Double Torsion Bar		
7	Optical-Lever		
8	Coil-Actuators	8b	
9	Coil-LVDT	2	
10	Tiltmeter		
11	Hor-Accelerometer		
12	Vert-Accelerometer		
13	PZT-Actuator	4 2m − − −	

RUSTREL, LSBB

-100

-120

-160

-180

-200

From https://lsbb.eu

(Laboratoire Souterrain Bas Bruit) CNRS/Nice: LSBB Stéphane Gaffet

10-1

RESIF

HNM

10¹

NEWTONIAN SEISMIC NOISE

3D- seismic networks **VBB-** seismic sensors Tiltmeters Microbarometers **Rotational Sensors**?

IPGP: Eléonore Stutzmann, El-Madani Aissaoui, **Claudio Satriano ENS: Frédéric Boudin ESEO:** Guy Plantier

Other Site: Gran Sasso National Laboratory (LNGS)

Future EEWS based on PGS

PEGASEWS: Prompt Earthquake Gravity signAls: Seismic Early Warning System Detection threshold: Magnitude ~7

Conclusions: From Gravity field to Earthquake Early Warning Systems

īPGI

-Detection of a prompt gravity signal for Tohoku eq.: Very, very small <10⁻⁹ m/s² -Detection at Kamioka (Superconducting gravimeter) ≈-0.1-0.2µGal at 500km (Montagner et al., 2016) -In VBB stations in Japan and Eastern Asia (Vallée et al., 2017) -For other earthquakes (Vallée & Juhel, 2019)

-EEWS: magnitude estimate

-Need for new gravity Instruments (TOBA, Atom Interferometers,

superconducting gradiometers) In the frequency range 0.01-1Hz 28 March 2023

200 ki

ne relative to Tohoku earthquake origin time (s)

From gravitational waves to Earthquake Early Warning Systems to

Speed of light seismology

28 March 2023

Conclusions

From gravitational waves to Earthquake Early Warning Systems to

Speed of light seismology

28 March 2023

NOISE BUDGET

²⁸ March 2023

But what are exactly these signals that we observe ?

What do we expect to record with a ground-attached seismometer (or gravimeter)?

A seismometer is therefore a **seismo-gravimeter**, which records, after correction from the instrumental response, the difference between the ground acceleration and the gravitational perturbations

How to model the difference between these two terms (Δg - \ddot{u})?

Data & simulations at INU (GEOSCOPE, G) and MDJ (IRIS-China, IC)

Reply to Tom Heaton: prompt gravity signal and inertial acceleration do not cancel

28 March 2023