Mechanisms and Models for Nonclassical Nonlinearity in Heterogeneous Materials

Christoph Sens-Schönfelder

GFZ German Research Centre for Geosciences, Potsdam, Germany

SPIN, Pitlochry, 03/26/2023

▲□▶ ▲□▶ ▲ Ξ▶ ▲ Ξ▶ Ξ ∽ ९

Structues causing nonlinearity

Causative processes

The role of slip

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Structues causing nonlinearity

Causative processes

The role of slip

	quartz	sandstone
sound velocity (c)	5800 m/s	2000-3500 m/s
dc/dp for $p=1 ightarrow 200$ bar	1 %	200 %

	quartz	sandstone
sound velocity (c)	5800 m/s	2000-3500 m/s
dc/dp for $p=1 ightarrow$ 200bar	1 %	200 %

[Johnson and Sutin, 2005]

[Guyer and Johnson, 1999]

homogeneous quartzite

[Darling et al., 2006]

Berea sandstone

homogeneous quartzite

500

[Darling et al., 2006]

Image: A mail the state of the state of

Structues causing nonlinearity

Causative processes

The role of slip

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Size of contacts

Size of contacts

AFM image of the surface of a glass bead

Size of contacts

There are structures that can produce asperities of any size.

[Brown and Scholz, 2008]

▲□ → ▲圖 → ▲ 画 → ▲ 画 → のへで

▲□ → ▲圖 → ▲ 画 → ▲ 画 → のへで

▲□ > ▲圖 > ▲圖 > ▲圖 > ▲ ■ ● ● ●

▲口▶▲圖▶▲圖▶▲圖▶ ▲国▼ めんの

▲口▶▲圖▶▲圖▶▲圖▶ ▲国▼ めんの

▲□▶▲圖▶▲圖▶▲圖▶ ▲国▼ めんの

Van der Waals bonds

イロト イポト イヨト イヨト 三日

HELMHOLTZ

[?]

▲□▶▲圖▶▲圖▶▲圖▶ ▲国▼ めんの

<ロト 4 個 ト 4 国 ト 4 国 ト 国 の Q ()</p>

Pulling the contact apart

▲□ → ▲圖 → ▲ 画 → ▲ 画 → のへで

◆□ > ◆□ > ◆ □ > ◆ □ > ● ● ● ● ●

[Li et al., 2018]

▲口▶ ▲□▶ ▲臣▶ ▲臣▶ 三回 めんの

Can explain

- decrease in resonance frequency
- difference between up and down sweep
- asymmetry / increasing steepness
- time dependency (relaxation)
- speed dependency

・ロト ・ 一下・ ・ ヨト

Structues causing nonlinearity

Causative processes

The role of slip

Formation of bonds in AFM

Atomic force microscope

・ロト・西・・田・・田・・日・シック

Formation of bonds in AFM

[Li et al., 2011]

Slide-hold-slide experiment with AFM

- microscopic aging effect much larger compared to macroscopic contact aging
- contact aging involves changes in contact quality
- formation of chemical bonds across the contact are likely involved in the aging process

・ロト ・ 同ト ・ ヨト ・ ヨ

time series

[Renaud et al., 2013]

▲□▶ ▲□▶ ▲ □▶ ▲ □ ● ● ● ●

[Renaud et al., 2013]

- ▲ ロ ト ▲ 国 ト ▲ 国 ト ト 国 - うくぐ

Velocity *during* a strain cycle

- fast co-seismic softening
- slow post-seismic stiffening
- hysteresis
- bow tie loops indicate frequency doubling
- stiffening at maximum and minimum strain

▲日▼▲□▼▲目▼▲目▼ 回 ろぐの

Model for sheared material contact

contacts are made up of connections (micro asperities, chemical bonds, capillary bridges ...)

 $M(t) = M_0 - AN(t)$

M: modulus

- N: fraction of broken connections:
 - connections break when strained
 - connections are created at current strain and constant rate

$$rac{dN_i}{dt} = rac{
u \dot{arepsilon}}{ au_i} (1-N) - rac{1}{ au_i} N_i$$

$$N = rac{\sum N_i / au_i}{\sum 1 / au_i}$$
 for a unif. distr. of $au_{min} < au_i < au_{max}$.

- ▲ ロ ト ▲ 国 ト ▲ 国 ト ト 国 - うくぐ

Nonlinear signatures

[Sens-Schönfelder et al., 2019]

[Renaud et al., 2013]

Temperature dependence

[Simpson et al., 2023]

<□> <□> <□> <三> <三> <三> <三> <三> ○<</td>

Temperature dependence

◆□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Temperature dependence

Rate dependent damage from thermal strain explains velocity changes induced by temperature variations.

 slip is required to obtain strict decrease of velocity

- ▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 - りへの

Summary

- nonclassical nonlinearity originates at grain contacts
- processes at the molecular level govern the behavior
- slip plays an important role in transient proceesses

References I

GFZ

References II

References III

Shokouhi, P., Rivière, J., Guyer, R. A., Johnson, P. A., Shokouhi, P., Rivie, J., Guyer, R. A., and Johnson, P. A. (2017).

Slow dynamics of consolidated granular systems : Multi-scale relaxation Slow dynamics of consolidated granular systems : Multi-scale relaxation. 251604:2-5.

Simpson, J., van Wijk, K., Adam, L., and Esteban, L. (2023).

TemperatureInduced Nonlinear Elastic Behavior in Berea Sandstone Explained by a Modified Sheared Contacts Model.

J. Geophys. Res. Solid Earth, 128(1).

Snieder, R., Sens-Schönfelder, C., and Wu, R. (2017).

The time dependence of rock healing as a universal relaxation process, a tutorial. *Geophys. J. Int.*, 208(2):1–9.

Zaitsev, V. Y., Gusev, V. E., Tournat, V., and Richard, P. (2014). Slow relaxation and aging phenomena at the nanoscale in granular materials. *Phys. Rev. Lett.*, 112(March).

