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mechanisms in rocks? From 

micro-experiments to in-situ
experiments
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V. Durand, Personnal communication
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Fracturing : from the lab to the field

Triaxial tests : „full control“ Field observations : toward the unknown
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Fracturing : from the lab to the field

Triaxial tests : „full control“ Field observations : toward the unknow

• Different strain measurement types 
(SG, LVDT)

• AE monitoring (active + passive)

• Force measurements

• Control of strain rate, temperature, 
pressure (Pc, Pp...)

• Large scale geophysics

• Seismology

• Geodesy
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Fracturing : from the lab to the field

How to link these scales and provide a mechanical understanding of fault zones?

µm cm 10m

0,9mm

micro-mechanical testing Triaxial testing

In-situ testing
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Micromechanics



• Digital image correlation (DIC)
• CMV (M. Bornert, 1996)

➢ Displacement field
➢ Computation of strain components L. Wang, 2012

Optical 
measurements, 
resolution 55µm

SEM imaging, 
resolution ~1µm 
(and below)
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Micromechanics : DIC
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• ESEM : Environmental SEM, allowing control 
of pressure (water vapour) and temperature

• For sample preparation, everything is done to 
preserve natural water content :

Diameter 8mm
Flat surface dry cut
First phase of manual polishing (0,3µm)
Ionic polishing with cryogenisation (3h)

• Step loading experiment. Samples were
loaded with a small rate (force controlled)

• After loading, we waited for relaxation

• A mosaic of 12 pictures was taken during
each step for a broad investigation (= a full 
picture of 900*1200µm)

• Total duration of the experiments : 24 hours, 
NON STOP

Micromechanics : SEM
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Micromechanics : SEM
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Micromechanics : SEM
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• E11 component (horizontal)

Micromechanics : SEM



Zioupos et al. 1995

Romani et al. 2015 

Double Cleavage Drilled Compression :
=> Using the hole as a stress concentrator

Micromechanics : Optical experiments



Experimental Setup : image acquisition (Sylvia)
Y

Z : Autofocus

Rotation 𝑃𝑑𝑐 ≈ 3.7 µm (x10)

Yang et al. 2012

16
mm

8m
m

0.9
mm• Diameter : 8mm, length :16mm

• Diameter of the hole : 0.9mm
• Manually poliched surface (dry)
• The camera is constantly taking pictures. It 

takes about 12s to take all 4 pictures
• Duration of the experiment : ~1hour

Micromechanics : Optical experiments



Micromechanics : Optical experiments



• Single fracture 
propagating along the 
bedding orientation

• fracture set developing 
at 45°

• Both mode 1 and 
shearing

• Stair case shape

• Slidding along the 
bedding planes

Micromechanics : Optical experiments
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Triaxial testing (cm)



Cm-scale triaxial testing

• Size : D 42 mm × L 84.5 mm

• Density: 2.57 g/cm3, dry polished

• 3 bedding angles: 0°, 90°, 45°

• 16 acoustic sensors (P/S waves)

• 4 pairs (axial/radial) of strain gauges



Cm-scale triaxial testing

P-wave velocity model (from Thomsen‘s paramters)

Post-mortem SEM image

Mechanical behavior : stress-strain + continuous P-wave recording



Taking the best of both worlds!

• E22 component (vertical)

Master thesis of Sarah Djerad

Preliminary results on coupling of DIC measurements with P-
wave velocities acquisition on salt rocks

2 cm
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In-situ scale



ULR of Tournemire
• Underground Research Laboratory : URL

• Clay rich rocks are sedimentary rocks, prensenting fine
grained particules. They are considered for geological storage
of nuclear wastes.

• Toarcian layer presents ~50% of clay minerals
• Clay rich rocks are known to exhibit a strong anisotropy,

related to mineral shape, pore shape and bedding.
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Petrophysics : bringing the field in the lab

Intact zone

Damaged zone

Fault coreMelody Lefevre



Petrophysics : bringing the field in the lab



Petrophysics : bringing the field in the lab



Petrophysics : bringing the field in the lab
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CHENILLE: Coupled beHaviour
undErstaNdIng of fauLts: from the 

Laboratory to the fiEld

Bonnelye et al. 2023



CHENILLE experiment : drilling

9 boreholes : 
➢4 “heating boreholes” equipped with heaters and FO for distributed temperature measurement
➢4 acoustic monitoring boreholes for HF seismic boreholes
➢1 injection borehole equipped with in injection probe for gas injection and 3D displacement 
measurement
➢15 “short boreholes” for high resolution active seismic acquisition before/after experiment
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CHENILLE experiment : overview
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CHENILLE experiment : thermal loading
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Comsol simulations :



DTS :
➢ T°C resolution ±0.3, spatial resolution 1m

CHENILLE experiment : thermal & hydraulic loading
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Air injection system :



Combined DAQLink and TSP recording

Pneumatically driven Impact Source 
Installation of receiver tubes

Screwed 3C-receiver rods

CHENILLE experiment : active seismic
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- Traveltime tomography by simulr16

- Low velocity zones near tunnel walls 
(EDZ) 

- Lower velocities in the E part 
of Ga East 03

- High velocities at concrete 
tubing in the W part of the 
gallery

- Velocities decreasing from west to
east

- Low coverage in area of interest near
the fault structure

CHENILLE experiment : active seismic
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CHENILLE experiment : passive seismic

Manthei and Plankers 2018

16 sensors : 
• 12 high frequency field AE sensors (1-100kHz)
• 4 accelerometers

Boese et al., 2021
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Fracturing : from the lab to the field

How to link these scales and provide a mechanical understanding of fault zones?

µm cm 10m

0,9mm

micro-mechanical testing Triaxial testing

In-situ testing
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Fracturing : from the lab to the field

How to link these scales and provide a mechanical understanding of fault zones?

µm cm 10m

micro-mechanical testing
+ AE monitoring ( PhD of M. 
Lusseyran)

Triaxial testing

In-situ testing
Schuster et al., 2022
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Analog testing



Analog testing

• Use of analog materials (3D printed 
sand with binder, polystyrene…)

• Insertion of sensors in the material for 
better stress-strain measurements

• Use of multi-frequencies acoustic 
sensors

DIMITRI : Dispositif de Modélisation Analogique Triaxial
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Thanks ☺



Material Density, 𝜌

(kg.m-3)

Thermal conductivity

(W m-1 K-1)

Heat capacity

(J kg-1·K-1)

horizontal vertical

Undisturbed

clay rock

2400 2 0.7 1000

Fault core 2300 2 0.7 1000

Damage zone 2350 2 0.7 1000

Heater

(steal)

7850 44.5 44.5 475
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Thermal diffusivity parameters
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