SPIN workshop, Pitlochry, Scotland, 25th March 2023

Wave-induced rockfall triggering

Unexpected effect of low seismicity

Anne Mangeney¹, Virginie Durand², Hugo Martin¹, Xiaoping Jia³, Julien De Rosny³, Renaud Toussaint⁴, Pascal Bernard¹, Clément Hibert⁴, Maxime Farin¹, Fabien Bonilla¹, Claudio Satriano¹, Yvon Maday⁵, OVPF¹

¹IPGP, Université Paris Cité, ²Géoazur, ³Institut Langevin, ⁴EOST, ⁵JL Lions

Natural field lab for rockfalls: Piton de la Fournaise

Permanent seismic network cameras

One eruption very 8 months by Volcano-tectonic seismicity (VT), Heavy rain

Hibert et al. 2011, 2014, 2017, Durand et al. 2018

What triggers slope instabilities ?

Long term forcings (months to years) Gravity Erosion Cone deformation Healing Short term forcings (days) Seismicity → c ∛ μ∛

4-10m

Yield stress

Tatard et al. 2010, Dietze et al. 2017, Bontemps et al. 2020, Durand et al. 2023

3

10-year rockfall's catalogue

Piton de la Fournaise, Dolomieu crater

Hibert et al. 2011, 2014, 2017, Durand et al. 2018

10-year rockfall's catalogue Seismic energy loss of potential energy

Piton de la Fournaise, Dolomieu crater

Lab-scale granular flow experiments

Hibert et al. 2011, 2014, 2017, Durand et al. 2018 Farin, Mangeney et al. 2018, 2019

From seismic energy to rockfall volume

10-year rockfalls + seismicity (VT) + rainfall

umulat

0.8

0.0

2

×

Spatio-temporal distribution of rockfalls

Low seismicity may trigger rockfalls

Does low seismicity trigger rockfalls ?

Moment dominated by strong VT events

Number dominated by small VT events

No delay for strong VT

Does rain trigger rockfalls ?

Rain before slightly > after

Seismicity induced yield weakening

Long term story of crater Dolomieu slopes

$$\tau = \mu (\sigma_{-p}) + c$$

Lab-scale avalanche triggering with ultrasounds

Long term story of crater Dolomieu slopes

Dry granular flows experiments

$$\tau = \mu (\sigma - p) + c$$

Lab-scale avalanche triggering with ultrasounds

Ultrasound triggered avalanche

U_t

Jia et al., 2011 Leopoldes et al., 2020

Friction weakening

$$\mu_s^*/\mu_s \sim 1 - (c^3/g)[U_0/(\mu_s f h^3)]$$

c sound speed

Simulation of wave effects on granular motion

Discrete Element Method

Grain motion time scale

Contact Dynamics

Contact forces verify contact laws

Constrained optimization problem

Wave induced weakening of grain-grain friction

Schematic view

Friction coefficient μ decreases down to ~0

Granular avalanche without waves

After a time delay, fully developped granular flow

Granular avalanche without waves

Granular flow generated at the right boundary condition

Martin et al. 2023

Avalanche triggering with waves

Very shortly, fully developped granular flow even at $O = 16^{\circ}$

Wave-induced change in avalanche 'nucleation' time

No waves $H_0/d = 14.4, \theta = 17^{\circ}$

Waves $H_0/d = 14.4, \theta = 16^\circ, f = 70 \text{ kHz}$

Normalized velocity fluctuations 0.00.51.01.50.51.00.01.5 $\circ t$] 0.2 0.2° t 0.4 0.4 0.6 0.6 t (s) t (s) 0.8 0.8 1.0 1.0 1.21.2 0.3 0.9 0.9 0.3 $\mathbf{v} V/V$ \mathbf{r} V/V Layers: top Waves reduce 'nucleation' time bottom

Wave impact on avalanche triggering

- Low amplitude high frequency waves may trigger slope instabilities
- Rockfall response to low seismicity and time delay depend on the stability state of the slope
- Quantification of physical processes requires field data, lab experiments and simulations

SLIDEQUAKES

Need to account for long-term swarm-type seismic activity for hazard assessment

Whole catalogue

Do low seismicity rainfall trigger rockfalls ?

Do low seismicity rainfall trigger rockfalls ?

Granular collapse on inclined plates

Signorini & Coulomb's contact laws

Lab-scale avalanche triggering with ultrasounds

Avalanche triggering with waves

Already small motion at $O = 13^{\circ}$!

Ultrasound triggered avalanche

c sound speed

 $U_0/(\mu_s f h^3)$ (x 10⁻³ m⁻².s) 13