Facing the Curse of Dimensionality

Klaus Mosegaard

Niels Bohr Institute, University of Copenhagen

Ideal Sampling Solutions to the Non-linear Probabilistic Inverse Problem

Solution: Sampling the Posterior PDF

3

Solution: Sampling the Posterior PDF

4

Solution: Sampling the Posterior PDF

5

Solution: Sampling the Posterior PDF

..but how difficult is it to obtain such a sample?

Monte Carlo Algorithms in Spaces of High Dimension

Why pre-knowledge about the distribution is decisive!

8

Sampling a Gaussian without knowing it is a Gaussian

Examples: Let us consider the case where $\sigma_{q}^{2}=1$, and $\sigma_{n}^{2}=\frac{1}{n}$:

1. $\mathrm{N}=2$:

Expected acceptance probability: 0.4082
Mean waiting time between accepted moves: $0.4082^{-1} \approx 2.5$ iterations
2. $N=10$:

Expected acceptance probability: $1.5828 \cdot 10^{-4}$
Mean waiting time between accepted moves: ≈ 6318 iterations.
3. $N=100$:

Expected acceptance probability: $1.03 \cdot 10^{-80}$
Mean waiting time between accepted moves: $\approx 10^{80}$ iterations.
9

Sampling a Gaussian, knowing that it is Gaussian: Easy!

Characterized by:

- N components of its mean vector
- $N(N+1) / 2$ components of its covariance matrix.

The family of Gaussians over an N-dimensional space is a manifold of dimension

$$
N+N(N+1) / 2
$$

- At least $N+N(N+1) / 2$ function evaluations are required to characterize ("reconstruct") an N-dimensional Gaussian.
- Consequently, the best conceivable algorithm needs $\sim N+N(N+1) / 2$ function evaluations to produce one exact sample of an N-dimensional Gaussian!

Sampling a Gaussian is not a hard problem, if you know it is Gaussian

Blind Sampling of a Complex Distribution (Hard)

Assume:

- f can be expanded in terms of basis functions:

$$
f(\mathbf{x})=\sum_{j=1}^{J} u_{j} \varphi_{j}(\mathbf{x})
$$

- We have K samples $\mathbf{x}_{1}, \cdots, \mathbf{x}_{K}$ and sample values:

$$
s_{k}=f\left(\mathbf{x}_{k}\right)=\sum_{j=1}^{J} u_{j} \varphi_{j}\left(\mathbf{x}_{k}\right)
$$

$$
\text { Hence, } \mathbf{s}=\mathbf{F u} \text { where } \mathbf{s}=\left(s_{1}, \cdots, s_{K}\right), \mathbf{u}=\left(u_{1}, \cdots, u_{J}\right) \text {, and } F_{k j}=\varphi_{j}\left(\mathbf{x}_{k}\right)
$$

Blind Sampling of a Complex Distribution (Hard)

- We have K samples $\mathbf{x}_{1}, \cdots, \mathbf{x}_{K}$ and sample values:

$$
s_{k}=f\left(\mathbf{x}_{k}\right)=\sum_{j=1}^{J} u_{j} \varphi_{j}\left(\mathbf{x}_{k}\right)
$$

- $\mathbf{s}=\mathbf{F u}$
$\mathbf{F}^{T} \mathbf{F}$ singular (e.g., \# samples $<J$) \Rightarrow Incomplete knowledge/sampling \Rightarrow Potentially missing "peaks"

If \# required base functions grows exponentially with dimension, the problem is Hard!

Blind Sampling a Complex Distribution (Hard)

Blind Sampling of a Complex Distribution (Hard)

When Solutions are Essentially Located in a Lower-Dimensional Subspace

Sometimes solutions are essentially located in a lower-dimensional manifold..

Highly Nonlinear Inverse Problems: Dimensionality and Degrees of Freedom

Easy to find acceptable models, but hard to sample due to the high dimension

- Space-filling Distribution
- N degrees of freedom
- Embedded in ND

Highly Nonlinear Inverse Problems: Dimensionality and Degrees of Freedom

- Parametric distribution
- 1 degree of freedom
- Embedded in 2D

Hard

- Non-parametric distribution
- 1 degree of freedom
- Embedded in 2D

Highly Nonlinear Inverse Problems: Dimensionality and Degrees of Freedom

- Parametric distribution
- 1 degree of freedom
- Embedded in ND

Very Hard

- Non-parametric distribution
- 1 degree of freedom
- Embedded in ND

A Non-Parametric Posterior from Inversion of Seismic Data with a Multiple-Point Geostatistical Prior

GAIA LAB: https://wp.unil.ch/gaia/mps/ds/

Preliminary Conclusion

- A Posterior that is only nonzero close to a subspace described by (few) local coordinates is easy to sample.
- A Posterior that is only nonzero close to a subspace without local coordinates is difficult to sample.
- The latter case gets worse when the dimension of the embedding space grows!

MCMC Algorithms with Informed Proposals

Strategies guided by the physics of the problem

27

28

30

Building Approximate Physics into MCMC Without an (Asympthotic) Bias

MCMC with Informed Proposals: The Idea

$$
\begin{aligned}
& \text { Propose with } q\left(\mathbf{m}_{n+1} \mid \mathbf{m}_{n}\right) \text { Accept with probability: } \\
& \qquad P_{a c c}=\frac{\sigma\left(\mathbf{m}_{n+1}\right)}{\sigma\left(\mathbf{m}_{n}\right)} \frac{q\left(\mathbf{m}_{n} \mid \mathbf{m}_{n+1}\right)}{q\left(\mathbf{m}_{n+1} \mid \mathbf{m}_{n}\right)}
\end{aligned}
$$

MCMC with Informed Proposals: The Idea

Propose with $q\left(\mathbf{m}_{n+1} \mid \mathbf{m}_{n}\right)$ Accept with probability:

$$
P_{a c c}=\frac{\sigma\left(\mathbf{m}_{n+1}\right)}{\sigma\left(\mathbf{m}_{n}\right)} \frac{q\left(\mathbf{m}_{n} \mid \mathbf{m}_{n+1}\right)}{q\left(\mathbf{m}_{n+1} \mid \mathbf{m}_{n}\right)}
$$

A 1-D Inverse Scattering Problem with 1000-parameters

Khoshkholgh, Zunino and Mosegaard, 2021: Informed Proposal Mo
Journ. Int.

A 1-D Inverse Scattering Problem with 1000-parameters

Khoshkholgh, Zunino and Proposal Monte Carlo. Geophys. Journ. Int.

A 1-D Inverse Scattering Problem with 1000-parameters

Khoshkholgh, Zunino and
Mosegaard, 2021: Informed Proposal Monte Carlo. Geophys. Journ. Int.

Linear Inversion: An Approximate Solution

Approximate (Linear) Inversion: Modelization Error

Envelope of true error

Envelope of 2. order error

1. Assume the approximate model is the true model
2. Simulate fully nonlinear data from this model
3. Find (2. order) approximate solution
4. Compute modelization error

Defining the Informed Proposal Distribution

39

40

Convergence: Informed-Proposal Monte Carlo

In this example: IPMC equilibrates $10^{3}-10^{4}$ times faster

An Approximate Solution

Approximate Reflectivity Model

An Approximate Solution from Classical Processing

44

45

Samples from the combined Prior and Modelization Error Distributions

47

Convergence: Informed Proposal Monte Carlo

In this example: IPMC equilibrates in ~ 300 iterations

