Facing the Curse of Dimensionality

Klaus Mosegaard

Niels Bohr Institute, University of Copenhagen

Presentation 21 March 2023 at the SPIN short course, Pitlochry, Scotland

1

Ideal Sampling Solutions to the Non-linear Probabilistic Inverse Problem

Solution: Sampling the Posterior PDF

...but how difficult is it to obtain such a sample?

Monte Carlo Algorithms in Spaces of High Dimension

Why pre-knowledge about the distribution is decisive!

7

Blind MCMC Sampling of a Gaussian: A Hard Problem!

Assumptions:

• x is Gaussian:

$$f(\mathbf{x}) = \mathcal{N}_{\mathbf{x}}(\mathbf{x}_0, \mathbf{C}).$$

 Proposal distribution is isotropic Gaussian:

$$q(\mathbf{x} \mid \mathbf{x}_q) = \mathcal{N}_{\mathbf{x}} (\mathbf{x}_q, \mathbf{C}_q).$$

• Start sampling at f's maximum point \mathbf{x}_0 .

Sampling a Gaussian without knowing it is a Gaussian

Examples: Let us consider the case where $\sigma_q^2=1$, and $\sigma_n^2=\frac{1}{n}$:

1. N = 2:

Expected acceptance probability: 0.4082

Mean waiting time between accepted moves: $0.4082^{-1} \approx 2.5$ iterations

2. N = 10:

Expected acceptance probability: $1.5828 \cdot 10^{-4}$

Mean waiting time between accepted moves: \approx 6318 iterations.

3. N = 100:

Expected acceptance probability: $1.03 \cdot 10^{-80}$

Mean waiting time between accepted moves: $\approx 10^{80}$ iterations.

g

Sampling a Gaussian, knowing that it is Gaussian: Easy!

Characterized by:

- N components of its mean vector
- N(N+1)/2 components of its covariance matrix.

The family of Gaussians over an N-dimensional space is a manifold of dimension

$$N + N(N+1)/2$$

- At least N + N(N+1)/2 function evaluations are required to characterize ("reconstruct") an N-dimensional Gaussian.
- Consequently, the best conceivable algorithm needs $\sim N + N(N+1)/2$ function evaluations to produce one exact sample of an N-dimensional Gaussian!

Sampling a Gaussian is **not** a hard problem, if you know it is Gaussian

11

Blind Sampling of a Complex Distribution (Hard)

Assume:

• *f* can be expanded in terms of basis functions:

$$f(\mathbf{x}) = \sum_{j=1}^{J} u_j \varphi_j(\mathbf{x})$$

 We have K samples x₁, ···,x_K and sample values:

$$s_k = f(\mathbf{x}_k) = \sum_{i=1}^J u_j \varphi_j(\mathbf{x}_k)$$

Hence, $\mathbf{s}=\mathbf{F}\mathbf{u}$ where $\mathbf{s}=(s_1,\cdots,s_K)$, $\mathbf{u}=(u_1,\cdots,u_J)$, and $F_{kj}=\varphi_j(\mathbf{x}_k)$.

Blind Sampling of a Complex Distribution (Hard)

 We have K samples x₁, ···,x_K and sample values:

$$s_k = f(\mathbf{x}_k) = \sum_{j=1}^J u_j \varphi_j(\mathbf{x}_k)$$

• s = Fu

 $\mathbf{F}^T\mathbf{F}$ singular (e.g., # samples < J) \Rightarrow Incomplete knowledge/sampling \Rightarrow Potentially missing "peaks"

If # required base functions grows exponentially with dimension, the problem is Hard!

13

Blind Sampling a Complex Distribution (Hard)

When Solutions are Essentially Located in a Lower-Dimensional Subspace

17

Sometimes solutions are essentially located in a lower-dimensional manifold..

19

Highly Nonlinear Inverse Problems: Dimensionality and Degrees of Freedom

Easy to find acceptable models, but hard to sample due to the high dimension

- Space-filling Distribution
- N degrees of freedom
- Embedded in ND

Highly Nonlinear Inverse Problems: Dimensionality and Degrees of Freedom

Easy

- Parametric distribution
- 1 degree of freedom
- Embedded in 2D

Hard

- Non-parametric distribution
- 1 degree of freedom
- Embedded in 2D

21

Highly Nonlinear Inverse Problems: Dimensionality and Degrees of Freedom

Easy

- Parametric distribution
- 1 degree of freedom
- · Embedded in ND

- Non-parametric distribution
- 1 degree of freedom
- · Embedded in ND

A Non-Parametric Posterior from Inversion of Seismic Data with a Multiple-Point Geostatistical Prior

Model realization from a Multiple-Point Geostatistical Prior

GAIA LAB: https://wp.unil.ch/gaia/mps/ds/

23

Preliminary Conclusion

- A Posterior that is only nonzero close to a subspace described by (few) local coordinates is easy to sample.
- A Posterior that is only nonzero close to a **subspace without local coordinates** is **difficult** to sample.
- The latter case gets worse when the dimension of the embedding space grows!

MCMC Algorithms with Informed Proposals

Strategies guided by the physics of the problem

25

Building Approximate Physics into MCMC Without an (Asympthotic) Bias

31

Defining the Informed Proposal Distribution

- Define proposal distribution as a Gaussian centered at the approx. model
- Use modelization errors at each depth/TWT as standard dev. in the proposal

39

