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Ideal Sampling Solutions to the Non-linear
Probabilistic Inverse Problem
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Solution: Sampling the Posterior PDF
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Solution: Sampling the Posterior PDF

4



22/03/2023

3

(Fernandes and Mosegaard, Geophysical Prospecting 2022)

Solution: Sampling the Posterior PDF
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Solution: Sampling the Posterior PDF

...but how difficult is it to obtain such a sample?
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Monte Carlo Algorithms in Spaces 
of High Dimension

Why pre-knowledge about the 
distribution is decisive!
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Blind MCMC Sampling of a Gaussian: A Hard Problem!

Assumptions:

• 𝐱 is Gaussian:

𝑓(𝐱) = 𝒩𝐱 (𝐱", 𝐂).

• Proposal distribution is isotropic 

Gaussian:

𝑞(𝐱 | 𝐱#) = 𝒩𝐱 (𝐱#, 𝐂#).

• Start sampling at 𝑓’s maximum point 𝐱". 

𝑓(𝐱)

𝑞(𝐱 | 𝐱!)
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Examples: Let us consider the case where 𝜎!" = 1, and 𝜎#" =
$
#

: 

1. N = 2 :
Expected acceptance probability:  0.4082
Mean waiting time between accepted moves: 0.4082%$ ≈ 2.5 iterations

2. 𝑁 = 10 :
Expected acceptance probability: 1.5828 · 10%&
Mean waiting time between accepted moves: ≈ 6318 iterations. 

3. 𝑁 = 100 :
Expected acceptance probability: 1.03 · 10%'(
Mean waiting time between accepted moves: ≈ 10'( iterations.

Sampling a Gaussian without knowing it is a Gaussian
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Sampling a Gaussian, knowing that it is Gaussian: Easy!

Characterized by:

• 𝑁 components of its mean vector

• 𝑁 (𝑁 + 1)/2 components of its 
covariance matrix.

The family of Gaussians over an N-dimensional  space is a 
manifold of dimension

𝑁 + 𝑁 (𝑁 + 1)/2
10
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• At least 𝑁 + 𝑁(𝑁 + 1)/2 function evaluations are required 
to characterize (“reconstruct”) an N-dimensional Gaussian.

• Consequently, the best conceivable algorithm needs 
~ 𝑁 + 𝑁(𝑁 + 1)/2 function evaluations to produce one 
exact sample of an 𝑁-dimensional Gaussian! 

Sampling a Gaussian is not a hard problem, 
if you know it is Gaussian
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Blind Sampling of a Complex Distribution (Hard)

• 𝑓 can be expanded in terms of basis 
functions: 

Assume:

𝑓 𝐱 = 6
$%&

'

𝑢$𝜑$(𝐱)

• We have 𝐾 samples 𝐱&, ⋯,𝐱( and 
sample values:

𝑠) = 𝑓 𝐱) =6
$%&

'

𝑢$𝜑$(𝐱))

Hence,  𝐬 = 𝐅𝐮 where 𝐬 = (𝑠&, ⋯ ,𝑠(), 𝐮 = (𝑢&, ⋯ ,𝑢'), and 𝐹)$ = 𝜑$(𝐱)).

𝑓(𝐱)
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• We have 𝐾 samples 𝐱&, ⋯,𝐱( and 
sample values:

𝑠) = 𝑓 𝐱) =6
$%&

'

𝑢$𝜑$(𝐱))

Blind Sampling of a Complex Distribution (Hard)

• 𝐬 = 𝐅𝐮

𝐅*𝐅 singular  (e.g., # samples < 𝐽)  ⟹ Incomplete knowledge/sampling
⟹ Potentially missing ”peaks”

If  # required base functions grows exponentially with dimension, the problem is Hard!
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Blind Sampling a Complex Distribution (Hard)
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Blind Sampling of a Complex Distribution (Hard)
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Sampling of a Complex Distribution, having gradients (Easier)
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When Solutions are Essentially Located in 
a Lower-Dimensional Subspace
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Sometimes solutions are essentially located in a
lower-dimensional manifold..
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Sometimes solutions are essentially located in a
lower-dimensional manifold..
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Highly Nonlinear Inverse Problems: Dimensionality and 
Degrees of Freedom

• Space-filling Distribution
• N degrees of freedom
• Embedded in ND

Easy to find acceptable models, but hard to 
sample due to the high dimension
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• Parametric distribution
• 1 degree of freedom
• Embedded in 2D

• Non-parametric distribution
• 1 degree of freedom
• Embedded in 2D

Easy Hard

Highly Nonlinear Inverse Problems: Dimensionality and 
Degrees of Freedom
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• Parametric distribution
• 1 degree of freedom
• Embedded in ND

• Non-parametric distribution
• 1 degree of freedom
• Embedded in ND

Easy Very Hard

Highly Nonlinear Inverse Problems: Dimensionality and 
Degrees of Freedom
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GAIA LAB: https://wp.unil.ch/gaia/mps/ds/

A Non-Parametric Posterior from Inversion of Seismic Data 
with a Multiple-Point Geostatistical Prior

Seismic Data
Model realization from a Multiple-Point 
Geostatistical Prior
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Preliminary Conclusion

• A Posterior that is only nonzero close to a subspace described 
by (few) local coordinates is easy to sample.

• A Posterior that is only nonzero close to a subspace without 
local coordinates is difficult to sample.

• The latter case gets worse when the dimension of the 
embedding space grows!
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MCMC Algorithms with
Informed Proposals

Strategies guided by

the physics of the problem
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Lev Landau (1908-1968)
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𝔇 𝔐𝐝 = 𝐠(𝐦)

The Forward Problem
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𝔇 𝔐𝐝 = 𝐠(𝐦)

The Inverse Problem
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𝔇 𝔐𝐝 = 𝐠(𝐦)

The Inverse Problem

Approximate
Inverse
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𝔇 𝔐𝐝 = 𝐠(𝐦)

The Approximate Inverse Problem
Modelization

error
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Building Approximate Physics into 
MCMC Without an (Asympthotic) Bias
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Informed Poposal
(Approximate Posterior)

MCMC with Informed Proposals: The Idea

True Posterior
𝜎(𝐦)

Propose new steps
with 𝑞(𝐦"#$|𝐦")
Without sample bias

Propose with 𝑞 𝐦!"# 𝐦! Accept with probability:  

𝑃!"" =
𝜎 𝐦#$%

𝜎 𝐦#

𝑞(𝐦#|𝐦#$%)
𝑞(𝐦#$%|𝐦#)
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True Posterior
𝜎(𝐦)

Propose with 𝑞 𝐦!"# 𝐦! Accept with probability:  

𝑃!"" =
𝜎 𝐦#$%

𝜎 𝐦#

𝑞(𝐦#|𝐦#$%)
𝑞(𝐦#$%|𝐦#)

Informed Poposal
(Approximate Posterior)

Propose new steps
with 𝑞(𝐦"#$|𝐦")
Without sample bias

MCMC with Informed Proposals: The Idea
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A	1-D	Inverse	Scattering	Problem	with	1000-parameters

Khoshkholgh, Zunino and 
Mosegaard, 2021: Informed 
Proposal Monte Carlo. Geophys. 
Journ. Int.
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A	1-D	Inverse	Scattering	Problem	with	1000-parameters

Khoshkholgh, Zunino and 
Mosegaard, 2021: Informed 
Proposal Monte Carlo. Geophys. 
Journ. Int.
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A	1-D	Inverse	Scattering	Problem	with	1000-parameters

Khoshkholgh, Zunino and 
Mosegaard, 2021: Informed 
Proposal Monte Carlo. Geophys. 
Journ. Int.

Born Approximation
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Linear Inversion: An Approximate Solution
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Approximate (Linear) Inversion: Modelization Error

Envelope of true error

1. Assume the approximate 
model is the true model

2. Simulate fully nonlinear data 
from this model

3. Find (2. order) approximate 
solution

4. Compute modelization error

Envelope of 2. order error
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1. Define proposal distribution as a 
Gaussian centered at the approx. 
model

2. Use modelization errors at each 
depth/TWT as standard dev. in the 
proposal

Defining the Informed Proposal Distribution
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Convergence: Informed-Proposal Monte Carlo

MCMC

IPMC

In this example:     IPMC equilibrates 10+ - 10, times faster 

Misfit: IPMC vs MCMC
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A ~940000-parameter Full-Waveform Acoustic Problem

Acoustic wave field recorded at the surfaceTrue Velocity Field

Khoshkholgh, Mosegaard and Zunino (2022)
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An Approximate Solution

Approximate Reflectivity Model
Estimated Acoustic Velocity Field
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An Approximate Solution from Classical Processing

Approximate Velocity ModelEstimated Acoustic Velocity Field
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Creating the Modelization Error Distribution

Final Approximate Velocity Model Envelope 𝐦!&&'() − 𝑯!&&'() 𝒈&'*"+,* 𝐦!&&'()
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Samples from the combined Prior and 
Modelization Error Distributions
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Samples from the Posterior Distribution
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Convergence: Informed Proposal Monte Carlo

In this example:     IPMC equilibrates in ~300 iterations
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