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Survey and Experimental Design

Can not avoid: potentially one of the most common tasks
Applied in many other fields of work and research

Many geophysical surveys are designed in large part using
tried and tested rules of thumb — heuristics

Heuristics are generally robust, but not optimal: far more
sophisticated theory exists and is used in other fields

— Statistical Experimental Design

We will examine this theory, and both common and state of
the art applications



TUTORIAL

The Leading Edge, 2004

https://blogs.ed.ac.uk/curtis/

Theory of model-based geophysical survey and experimental

design
Part A—linear problems

AnNprew Curms, Schiumberger Cambridge Research, Cambridge, UK.

Ennrmcrus sums of money are invested by industry and
scientific funding agencies every year in seismic, well log-
ging, electromagnetic, earthquake monitoring and micro-
seismic surveys, and in laboratory-based experiments. For
each survey or experiment a design process must first take
place. An efficient design is usually a compromise—a suit-
able trade-off between information that is expected to be
retrieved about a model of interest and the cost of data
acquisition and processing. In some fields of geophysics,
advanced methods from design theory are used, not only
to optimize the survey design, but also to shift this entire
trade-off relationship between information and cost. In oth-
ers, either crude rules of thumb are used or, indeed, expected
model information is not optimized at all.

This is the first part of a two-part tutorial that provides
a theoretical framework from the field of statistical experi-
mental design (SED), within which model-based survey
and experimental design problems and methods can be
understood. Specifically, these two articles describe meth-
ods that are pertinent to the detection and inference of phys-
ical properties of rocks in the laboratory, or in the earth.

The choice of method to use when designing experiments
depends greatly on how easily one can measure informa-
tion. This in turn depends principally on whether the rela-
tionship between data that will be measured and model
parameters of interest is approximately linear, or signifi-
cantly nonlinear. Consequently, the first article focuses on
the case where this relationship is approximately linear and
the next (in next month’s issue of TLE) deals with theory
for nonlinear design.

surface to constrain optimally the shallow subsurface con-
ductivity structure (Maurer and Boerner, GJI, 1998; Maurer
et al., 2000); designing the interrogation of human experts
to obtain optimal information to condition geophysical sur-
veys (Curtis and Wood, 2004); designing nonlinear AVO
surveys (van den Berg et al.,, 2003); planning crosswell seis-
mic tomography surveys that illuminate the inter-well struc-
ture optimally (Curtis, 1999; Curtis et al., 2004); updating
shallow resistivity survey designs in real-time as new data,
and hence new information are acquired (Stummer et al.,
2004); creating seismic acquisition geometries that maxi-
mize resolution of the earth model (Gibson and Trimeas,
2002).

This tutorial considers the case where we would like to
perform an experiment to collect data d (seismic, electro-
magnetic, logs, core, etc.) to constrain some model of earth

rties or architecture described by a vector m. Say we
define a set of basis functions {B,(x):;/=1.....P} that describe
elementary components of earth properties or architecture.
Examples of such basis functions used in geophysics are rock
properties in each of a set of mutually-exclusive spatial cells,
discrete Fourier components over a finite band-width, scat-
terers of energy at a set of fixed locations, or statistical prop-
erties observed over a finite range of length scales. Possible
models of the earth can then be expressed as:

(1)

The problem of estimating earth composition consists
of estimating coefficients m,.

I|I
M= m B (x)
j=1



Designing Experiments to
Constrain Parameters

Experiments should be designed such that:
— They can be conducted in practise

— Expected post-experimental model
parameter uncertainties are minimised
=» Model information is maximised

— Costs are constrained/minimised



How does experimental design work"?

Designs the relationship between
a set of parameters and some data
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How does experimental design work"?

Designs the relationship between
a set of parameters and some data
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How does experimental design work?

Designs the problem that we will have to solve
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Linear Experimental Design

slowness m
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m = (wave speed)!
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Linear Experimental Design

Is this region of the Earth heterogeneous?
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Linear Experimental Design
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The Survey on the Right...

Provides twice as many independent pieces of information as the
survey on the left, using the same number of data

Is nominally carried out at half the cost (2 sources + 2 receivers)

General Points

Eigenvalues specify precisely how many pieces of information can
be constrained in principle (no data uncertainties yet!)

For each e-value, corresponding e-vector describes precisely the
associated independent piece of information

E-system allows us to create measures of design quality...
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Linear Experimental Design

Eigenvalue = gradient squared
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Unfocussed Crosswell Example
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Unfocussed Crosswell Example
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Unfocussed Crosswell Example
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Borehole (Depth m)

Unfocussed Crosswell Example
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Unfocussed Crosswell Example

Eigenvalue Spectra
(100 cells, 400 paths)
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Borehole (Depth m)

20.0

40.0 =

60.0

80.0

100.0

Unfocussed Crosswell Example
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But how dense? Exactly where?
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Linear Experimental Design

Eigenvalues: how much

a b . .
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Linear Experimental Design
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¥ Optimise Data

Acquisition

Optimise Model
Parameterisation

Is this region of the Earth heterogeneous?



Focussed Crosswell Example

Shading shows diagonal
elements of Resolution
matrix (max. possible = 1)

Red crosses mark cells
spanning model subspace
of interest.

Horizonial Distance (m)
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How dense? Exactly where?

Not possible to design using intuition alone

=>» Need to solve Optimisation Problems



Questions?



