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Example — Gravity

For a small volume 8V, the excess mass is: For a sphere, the gravitational anomaly is:
AA1==Apéﬂ7 4ﬂR3Ap
And the gravit lyis:Ag = G 22 AgCez) = Garaiya

gravity anomaly is: Ag = G — 3(x2 + z2)
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gravity anomaly (mGals)
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2.0 Near Surface
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Outline

* Reminder/Expansion about covariance matrices

e What are uncertainties?

* Data Uncertainties, Cgl, and the )(2 — test
« Model Uncertainties, Cy !

* |dentifying what you want to learn and setting up your inverse
problem accordingly
* The null space of your problem
* Choosing a good parameterization
* Checking your results



What is a covariance matrix anyway?

¢/ = E[(—Elx;D)(x; — E[x;]]

G enera I |y we Can assume t h at E [Xl] — f (technically it is only if we take ‘enough’ samples we expect to get the mean,

but we can safely ignore this)
G = E[(x; = %)?] = of
CJLC] = E[(Xl — f)(xj — f)] — 0;0;
Some notes:

* We usually use a diagonal approximation C,] = ajz(S”

* We often use a single value C,/ = g26Y



Cq — Data Uncertainties

* Measurement uncertainties
* Processing-induced uncertainties
* Propagating uncertainties

* Errors vs uncertainties



Example — Gravity

For a small volume 8V, the excess mass is: For a sphere, the gravitational anomaly is:
AA1==Apéﬂ7 4ﬂR3Ap
And the gravit lyis:Ag = G 22 AgCez) = Garaiya

gravity anomaly is: Ag = G — 3(x2 + z2)
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Data Uncertainties — How do we estimate them?

Repeating the Experiment
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Data Uncertainties — How do we estimate them?

Two different sources of error give essentially the
same distribution
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Data Uncertainties — How do we estimate them?

* It’s difficult to estimate uncertainties accurately without repeated
experiments

* Most techniques to do so are somewhat ad-hoc
* Look before the first-arrival for fluctuations in the system
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Data Uncertainties — How do we estimate them?

* It’s difficult to estimate uncertainties accurately without repeated
experiments

* Most techniques to do so are somewhat ad-hoc

* Smooth the data, use this as the mean, calculate a o of sorts
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Data Uncertainties — How do we estimate them?

* It’s difficult to estimate uncertainties accurately without repeated
experiments

* Most techniques to do so are somewhat ad-hoc

* Repeat a few measurements (if you can), or search for similar parameters (using e.g.
reciprocity as in Cai & Zelt, Geophysics, 2022)

Near Surface
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Model Uncertainties — Things to think about

* How certain is our model? (E.g. anisotropy, attenuation etc)

 What do you know about it beforehand? (E.g. velocity ranges, density
is positive)

 What is the resolution, or parameterisation that you are interested
in?

What goes into your prior vs your model covariance?



How to estimate Cyy,

P wave Impedance Fluctuations
4 6 81012141618  -8-6-4-202 4 6 8
0 [} ! ! ! DS S 0 l l 1 1 1 1 1
. . (a) I I
* Often we just assume C, is just the | AR I
identity, because we have nothing else to 0.2- l 0.2-
put in there, but it can be estimated ‘l
* Gouveia & Scales stimate Cp, by first 041~ 044
: : - » -
getting m,-;o- by smoothing the log, then E L E
. . vo_s vo.s_ ..................................
getting the std from the fluctuations about £ cE | ]
that mean a a
. : .. : 0.8- o 0.8-
* This is capturing sub-seismic resolution i
changes in the model - ‘ 25_=_ ‘o )
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 103, NO. B2, PAGES 2759-2779, FEBRUARY 10, 1998 ) L.P ’ :
i
Bayesian seismic waveform inversion: Parameter 1.2+ : Q;'_" 1.2-
estimation and uncertainty analysis “‘ »

Wences P. Gouveia®! and John A. Scales
Department of Geophysics, Center for Wave Phenomena, Colorado School of Mines, Golden



Model Covariances — Gravity example

e Over the volume of the spheres: C,,, = 1500 kg/m?
e Within the blue box: C,, = 6.9 kg/m?
* Within the orange box: (,,, = 0.69 kg/m*
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Model Covariances — Gravity example
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Uncertainties — A Comprehensive Example

* Gouveia & Scales method: o
e Combining well-log and seismic data 02
. . - P wave S wave Density P wave S wave Densit
 Split the errors into 4 parts: g os "
* Random noise — use data from before the first § 08
arrival
* Near-surface heterogeneities — model many 3
different scenarios ., Bayes Occam |
* Modelling errors — model with many different a0 1 2 30 .., 50 o ™ 020 *’:"u »
. . . ; Ba 3 o c |
discretisations F‘YTW »w, | \‘ F 1 W*‘m{‘.
* Scaling factor (to match field and synthetic data)— ;|| |! « 9 ;.:... .‘J IHlin o‘] ey
try many, compute mean and o : | ‘ i : | |“‘ | =S
. % ‘ i
* Add these together, which assumes each o.&‘ ‘ , J .‘l. . ‘ |
component is Gaussian | :T"T‘", A ,. | L e
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 103, NO. B2, PAGES 2759-2779, FEBRUARY 10, 1998 l : % » i :33;: :‘;"'i;;:::;'::'l"-"ﬂ"‘ ;." )

Bayesian seismic waveform inversion: Parameter
estimation and uncertainty analysis

Wences P. Gouveia! and John A. Scales
Department of Geophysics, Center for Wave Phenomena, Colorado School of Mines, Golden




Prior Uncertainties and y?

* Suppose we now have an
estimate of our data
uncertainties.

* We can often fit this noise with
model details

* This is obviously not realistic
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Prior Uncertainty and y*

Start from our ‘usual’ objective function:
2 1 or\T' -1 | 1 bs\ -1 b
x“(m) = E(m — mP"") Cpl(m — mP"OT) + Z—(Gm — d°%)Cqt (Gm — d°Ps)

We want to minimize this, but not ‘all the way’ because we don’t want to fit the
noise. We use the y? test.

x*(m) ~ N

Here N = Ngata — Neonstraints = Ndegrees of freedom

A good explanation of the details is here: P 79 of http://experimentationlab.berkeley.edu/sites/default/files/pdfs/Bevington.pdf



Prior Uncertainty and y*

* Try a simpler problem to see where this comes from:

* Suppose we have N samples of a distribution P(x). Suppose we’ve discretized x
into k possible outcomes. We’d expect to observe x; a number of times

determined by P(x), more precisely NP(x) times. But this is of course not
exactly what we observe instead we observe hj(x). The x? test checks how close

our estimate h;(x) is to NP(x) , more specifically we calculate:

k
z h (x) — NP(X)) _ measured data spread
— ~ predicted data spread -

A good explanation of the details is here: P 79 of http://experimentationlab.berkeley.edu/sites/default/files/pdfs/Bevington.pdf



Prior Uncertainty and y*

Bl samples : .
04 - P What we are testing, is are our
> .
o modelled data ‘statistically
g consistent” with our field data.
o
50.2
| -
(T
00 / \ BN samples
Data (blue) are consistent with X L>f
the underlying distribution 8 0.50-
(orange) g.
£0.25
Data (blue) are NOT consistent

with the underlying 0.00"
distribution (orange)

A good explanation of the details is here: P 79 of http://experimentationlab.berkeley.edu/sites/default/files/pdfs/Bevington.pdf



Summary so far

* We split our prior uncertainties into C,, and Cy4

* Neither is easy to estimate

* There are ad hoc ways to do so

« We don’t want to fit our data perfectly — use y? test

Onwards to incorporate these errors into our final models!



Prior uncertainties -> Posterior uncertainties

Likelihood — where all
our carefully estimated
covariances come in

p(m|d) =

Posterior — its covariance is
often what we’re after

Prior — this is what we know
before we experiment

p(d|m)p(m)
p(d)

This is often ignored (I will follow
Andreas and leave this to Thomas)




Prior uncertainties — Posterior uncertainties
the sampling edition

Posterior distribution
p(ém | od)

Prior distribution
p(6m)

Initial state

Cpost




Prior uncertainties — Posterior uncertainties
the linear optimization edition

 We can show that:
Cpost _ (H 4 (C.prior)_l)_l
m m

* Just differentiate the misfit function and you find this relationship (or
look at section 3.4 of Tarantola’s 2005 book)

* Intuitively:
* The Hessian measures the (local) curvature of the misfit function

* The (inverse) covariance measures the curvature of a distribution

* OR The Hessian measures how two points in our forward model are related to
one another and the covariance measures how two points in our model space
are correlated



Prior uncertainties — Posterior uncertainties
the linear optimization edition

—— objective function
ost —— Hessian approx.
* If we find Cll‘r)l this way, we are e approx. min

approximating our objective function
locally by a parabola

* This gives us an estimate of how well
resolved our model parameters are

objective function (x?)

model parameter (e.g. velocity)



We have an a posteriori covariance ... are we done?

What about:
* The nullspace?
e Did | estimate the full covariance?

* How do | take this covariance and use it to answer my
original questions?



The Nullspace — Definition
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The Nullspace
the MCMC edition

b Here we W||| Samp|e the nullspace, Prior distribution Initial state Posterior distribution
but what parts and how completely p(6m|5d)
may depend on many things.

e This will also be true as we think
about variational inference etc

e Everything with MCMC is in the
‘infinite samples’ limit




The Nullspace

the linear optimization edition

* If we just find C,',),OSt we are
approximating our objective function
locally by a parabola

* This tells us nothing about the
nullspace

* |t does tell us how well resolved our
model parameters are

objective function (x?)

—— objective function
—— Hessian approx.
e approx. min

model parameter (e.g. velocity)




We have an a posteriori covariance ... are we done?

What about:
* The nullspace?
* Did | estimate the full covariance?

* How do | take this covariance and use it to answer my
original questions?



Example 1: 4D seismic

1. Collect data, and form an image

2. Change something (e.g. CO,)

3. Re-collect the same data, matching everything you can, and form another image
4. Subtract the two resulting images

Before: Injection: After:

Depth (m}

time (ms)
time (ms)




Example 1: 4D Seismic

(a) True 4D change

(b) Vertical extent
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What | want to know controls how | choose my model parameters



Example 1: 4D Seismic
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Here we started from many different baseline models, to attempt to propagate
uncertainties from one part of the process to the next.

Some uncertainties are unimportant for our final answer!

Kotsi et al, GJI, 2020



Example 1.5: Field Data
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Lethbridge, MSc thesis, 2021.



Example 2: Seismic imaging/migration

* These are all models, generated
during a stochastic optimization,
that fit the data to within our
acceptable criteria

* How can we effectively show this?

Ely et al, Geophysics, 2018



Example 2: Seismic imaging/migration

x"lo‘

15

Counts

05

These are all models, generated
during a stochastic optimization,
that fit the data to within our
acceptable criteria Anticline
How can we effectively show this? hEightg_i:Z;?;i‘;é.

Anticline Height
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Ely et al, Geophysics, 2018



Example 3: Seismic interpolation

Subsampled y =M 0 x

receiver number
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Here we want the
pointwise standard
deviation because we
will eventually use it as a
weight in our velocity
inversion

We use normalizing
flows (a variational
method) to
interpolate data
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Kumar et al, 2022



Summary

e “There are known unknowns and unknown unknowns”
(Maybe Donald Rumsfeld, 2002)

* It is important to characterize your uncertainties, but also to
understand and convey what your method leaves out

» Before you start to estimate and quantify your uncertainties, think
carefully about what you want to learn/understand/convey and make
sure that you are estimating the right parameters, and the most

important sources of uncertainty



Summary

e “There are known unknowns and vakrewndrkrowns’
(Maybe Donald Rumsfeld, 2002)

* It is important to characterize your uncertainties, but also to
understand and convey what your method leaves out

» Before you start to estimate and quantify your uncertainties, think
carefully about what you want to learn/understand/convey and make
sure that you are estimating the right parameters, and the most

important sources of uncertainty



A very incomplete list of interesting
references

* Gouveia & Scales, 1997, 1998

e Scales & Tenorio, 2001

 Zheng & Curtis, 2021

 Zhu et al, 2016

* Nawaz & Curtis, 2018

e Bui-Tanth et al, 2012

 Martin et al, 2012

* Mosegaard & Sambridge, Sambridge & Mosegaard, 2002



