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Example – Gravity 

For a small volume δV, the excess mass is: 
Δ𝑀 = Δ𝜌 𝛿𝑉
And the gravity anomaly is: Δ𝑔 = 𝐺 !"

#!

δV ρ

ρ+Δρ

gg+ Δ g

For a sphere, the gravitational anomaly is:
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Uncertainties
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Problem: we need to know both 𝐶𝐦,- and
𝐶𝐝,- before we can evaluate our objective 
function!



Outline

• Reminder/Expansion about covariance matrices
• What are uncertainties?

• Data Uncertainties, 𝐶𝒅
,-, and the 𝜒% − test 

• Model Uncertainties, 𝐶𝐦,-

• Identifying what you want to learn and setting up your inverse 
problem accordingly
• The null space of your problem
• Choosing a good parameterization
• Checking your results



What is a covariance matrix anyway?

𝐶!
"# = 𝐸[(𝑥"−𝐸 𝑥" )(𝑥# − 𝐸[𝑥#])]

Generally we can assume that 𝐸 𝑥" = 𝑥̅ (technically it is only if we take ‘enough’ samples we expect to get the mean, 
but we can safely ignore this)

𝐶3(( = 𝐸 𝑥( − 𝑥̅ % = 𝜎(%

𝐶3
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Some notes:

• We usually use a diagonal approximation 𝐶!
"# = 𝜎#$𝛿"#

• We often use a single value 𝐶!
"# = 𝜎$𝛿"#



𝐶𝐝 − Data Uncertainties

• Measurement uncertainties 
• Processing-induced uncertainties
• Propagating uncertainties
• Errors vs uncertainties



Example – Gravity 
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Data Uncertainties – How do we estimate them?

+noise



Data Uncertainties – How do we estimate them?
Two different sources of error give essentially the 
same distribution



Data Uncertainties – How do we estimate them?

• It’s difficult to estimate uncertainties accurately without repeated 
experiments
• Most techniques to do so are somewhat ad-hoc

• Look before the first-arrival for fluctuations in the system
• Smooth the data, use this as the mean, calculate a 𝜎 of sorts
• Repeat a few measurements (if you can), or search for similar parameters (using e.g. 

reciprocity as in Cai & Zelt, Geophysics, 2022)
• Guess 🙃 𝜎!"#$ = 0.11

𝜎$%! = 0.057
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Data Uncertainties – How do we estimate them?

• It’s difficult to estimate uncertainties accurately without repeated 
experiments
• Most techniques to do so are somewhat ad-hoc

• Look before the first-arrival for fluctuations in the system
• Smooth the data, use this as the mean, calculate a 𝜎 of sorts
• Repeat a few measurements (if you can), or search for similar parameters (using e.g. 

reciprocity as in Cai & Zelt, Geophysics, 2022)
• Guess 🙃

• Think about correlations between data points
𝜎!"#$ = 0.11
𝜎$%! = 0.093



Model Uncertainties – Things to think about

• How certain is our model?  (E.g. anisotropy, attenuation etc)
• What do you know about it beforehand? (E.g. velocity ranges, density 

is positive)
• What is the resolution, or parameterisation that you are interested 

in?

What goes into your prior vs your model covariance?



How to estimate 𝐶𝐦
• Often we just assume 𝐶𝐦 is just the 

identity, because we have nothing else to 
put in there, but it can be estimated 

• Gouveia & Scales stimate 𝐶𝐦 by first 
getting 𝑚&'()' by smoothing the log, then 
getting the std from the fluctuations about 
that mean

• This is capturing sub-seismic resolution 
changes in the model



Model Covariances – Gravity example
• Over the volume of the spheres: 𝐶> = 1500 kg/m$

• Within the blue box: 𝐶> = 6.9 kg/m$

• Within the orange box: 𝐶> = 0.69 kg/m$



Model Covariances – Gravity example



• Gouveia & Scales method:
• Combining well-log and seismic data
• Split the errors into 4 parts:

• Random noise – use data from before the first 
arrival

• Near-surface heterogeneities – model many 
different scenarios

• Modelling errors – model with many different 
discretisations

• Scaling factor (to match field and synthetic data) –
try many, compute mean and 𝜎

• Add these together, which assumes each 
component is Gaussian

Uncertainties – A Comprehensive Example



Prior Uncertainties and 𝜒#

• Suppose we now have an 
estimate of our data 
uncertainties.
• We can often fit this noise with 

model details
• This is obviously not realistic



Prior Uncertainty and 𝜒#

Start from our ‘usual’ objective function: 

𝜒% 𝐦 =
1
2
𝐦 −𝐦&'()' *
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We want to minimize this, but not ‘all the way’ because we don’t want to fit the 
noise.  We use the 𝜒% test.

𝜒% 𝐦 ≈ 𝑁

Here 𝑁 = 𝑁1?@? − 𝑁A)B/@'?(B@/ = 𝑁1CD'CC/ )E E'CC1)>

A good explanation of the details is here: P 79 of http://experimentationlab.berkeley.edu/sites/default/files/pdfs/Bevington.pdf



Prior Uncertainty and 𝜒#
• Try a simpler problem to see where this comes from:

• Suppose we have 𝑁 samples of a distribution 𝑃(𝑥).  Suppose we’ve discretized 𝑥
into 𝑘 possible outcomes.  We’d expect to observe 𝑥4 a number of times 
determined by 𝑃(𝑥), more precisely N𝑃(𝑥) times.  But this is of course not 
exactly what we observe instead we observe ℎ4 𝑥 . The 𝜒% test checks how close 
our estimate ℎ4 𝑥 is to N𝑃(𝑥) , more specifically we calculate:

𝜒% 𝑥 =N
4FG

H ℎ4 𝑥 − 𝑁𝑃 𝑥
%

𝑁𝜎%
=
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑎𝑡𝑎 𝑠𝑝𝑟𝑒𝑎𝑑
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 𝑠𝑝𝑟𝑒𝑎𝑑
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A good explanation of the details is here: P 79 of http://experimentationlab.berkeley.edu/sites/default/files/pdfs/Bevington.pdf



Prior Uncertainty and 𝜒#

A good explanation of the details is here: P 79 of http://experimentationlab.berkeley.edu/sites/default/files/pdfs/Bevington.pdf

What we are testing, is are our 
modelled data ‘statistically 
consistent’ with our field data.

Data (blue) are consistent with 
the underlying distribution 
(orange)

Data (blue) are NOT consistent 
with the underlying 
distribution (orange)



Summary so far

• We split our prior uncertainties into 𝐶𝐦 and 𝐶𝐝
• Neither is easy to estimate
• There are ad hoc ways to do so
• We don’t want to fit our data perfectly – use 𝜒$ test

Onwards to incorporate these errors into our final models!



Prior uncertainties -> Posterior uncertainties

𝑝 𝑚 𝑑 =
𝑝 𝑑 𝑚 𝑝 𝑚

𝑝 𝑑
Posterior – its covariance is 
often what we’re after

Prior – this is what we know 
before we experiment

This is often ignored (I will follow 
Andreas and leave this to Thomas)

Likelihood – where all 
our carefully estimated 
covariances come in



Prior uncertainties  → Posterior uncertainties 
the sampling edition

𝐶𝐦
&)/@



• We	can	show	that:

𝐶𝐦
()*+ = (𝐻 + (𝐶𝐦

(,"),)-.)-.

• Just differentiate the misfit function and you find this relationship (or 
look at section 3.4 of Tarantola’s 2005 book)
• Intuitively:

• The Hessian measures the (local) curvature of the misfit function
• The (inverse) covariance measures the curvature of a distribution
• OR The Hessian measures how two points in our forward model are related to 

one another and the covariance measures how two points in our model space 
are correlated 

Prior uncertainties  → Posterior uncertainties 
the linear optimization edition



• If we find 𝐶𝐦
𝐩𝐨𝐬𝐭 this way, we are 

approximating our objective function 
locally by a parabola 

• This gives us an estimate of how well 
resolved our model parameters are

Prior uncertainties  → Posterior uncertainties 
the linear optimization edition

𝐶𝐦
𝐩𝐨𝐬𝐭



We have an a posteriori covariance … are we done?

What about: 
• The nullspace?
• Did I estimate the full covariance?  
• How do I take this covariance and use it to answer my 

original questions?



The Nullspace – Definition 

• Unresolvable model 
differences

• Multiple models give 
exactly the same 
likelihood

• For gravity of a sphere: 
(𝑅, 𝜌) 𝑅$𝜌 = 𝑘

How would you find and 
characterize the nullspace
of your problem?



The Nullspace
the MCMC edition

• Here we will sample the nullspace, 
but what parts and how completely 
may depend on many things.

• This will also be true as we think 
about variational inference etc

• Everything with MCMC is in the 
‘infinite samples’ limit



The Nullspace
the linear optimization edition

• If we just find 𝐶𝐦
𝐩𝐨𝐬𝐭 we are 

approximating our objective function 
locally by a parabola 

• This tells us nothing about the 
nullspace

• It does tell us how well resolved our 
model parameters are



We have an a posteriori covariance … are we done?

What about: 
• The nullspace?
• Did I estimate the full covariance?  
• How do I take this covariance and use it to answer my 

original questions?



1. Collect data, and form an image
2. Change something (e.g. CO2) 
3. Re-collect the same data, matching everything you can, and form another image
4. Subtract the two resulting images

Before: Injection: After: 

Example 1: 4D seismic



Example 1: 4D Seismic

What I want to know controls how I choose my model parameters

Kotsi et al, GJI, 2020



Here we started from many different baseline models, to attempt to propagate 
uncertainties from one part of the process to the next.   

Kotsi et al, GJI, 2020

Example 1: 4D Seismic

Some uncertainties are unimportant for our final answer!



Example 1.5: Field Data

Lethbridge, MSc thesis, 2021.



Example 2: Seismic imaging/migration

Ely et al, Geophysics, 2018

• These are all models, generated 
during a stochastic optimization, 
that fit the data to within our 
acceptable criteria

• How can we effectively show this?



Example 2: Seismic imaging/migration

Ely et al, Geophysics, 2018

• These are all models, generated 
during a stochastic optimization, 
that fit the data to within our 
acceptable criteria

• How can we effectively show this?

depth

Anticline 
height



Example 3: Seismic interpolation

Kumar et al, 2022
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We use normalizing 
flows (a variational 
method) to 
interpolate data

Here we want the 
pointwise standard 
deviation because we 
will eventually use it as a 
weight in our velocity 
inversion



Summary

• “There are known unknowns and unknown unknowns”
(Maybe Donald Rumsfeld, 2002)

• It is important to characterize your uncertainties, but also to 
understand and convey what your method leaves out
• Before you start to estimate and quantify your uncertainties, think 

carefully about what you want to learn/understand/convey and make 
sure that you are estimating the right parameters, and the most 
important sources of uncertainty
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A very incomplete list of interesting 
references
• Gouveia & Scales, 1997, 1998
• Scales & Tenorio, 2001
• Zheng & Curtis, 2021
• Zhu et al, 2016
• Nawaz & Curtis, 2018
• Bui-Tanth et al, 2012
• Martin et al, 2012
• Mosegaard & Sambridge, Sambridge & Mosegaard, 2002  


