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Exploiting the nonlinear elastic properties has
implications in numerous fields across length scales
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Image source: P. Lundgren, Nature, 2014; wikipedia



Nonlinear elastic response can reveal incipient damage
and characterize a wide range of materials

Early Damage detection Material Characterization
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Field-scalel
Correspondence between

nonlinear elasticity and
permeability change?
Shokouhi et al. GRL (2020)
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Elastic softening and relaxation phenomena are
observed in both field and laboratory scales
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Nonlinear elastic response depends on stress and
fracture state (as well as RH and saturation)
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To understand the phenomenon at the Earth scale, we
study nonlinear elasticity at the laboratory scale
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Outline

Principles:
* Linear vs Nonlinear Wave propagation [« [\l s (\}
* How to measure nonlinear elasticity?

Compression phase: propagates faster

Dynamic Acousto-Elastic Testing (DAET):
e How to do DAET?
* Intact rock characterization
* Fractured rock’s response under in-situ stress and saturation

Outlook:
 New observations in granular media, Coupled X-ray CT and
DAET experiments




Linear Acoustics/Ultrasound

Small-amplitude wave: linear wave propagation

s=M(e)e
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t = Arrival time -> velocity
A = Amplitude -> attenuation
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Slower velocity + Lower amplitude

t,>t; and A,<<A;

Reflection
Slower velocity + Lower amplitude
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Closed cracks are “invisible”
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Nonlinear Acoustics/Ultrasound

Large-amplitude wave: nonlinear wave propagation
s=M(e)e
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g : strain bu=—L
M, : linear elastic modulus AJE
M(é’) - Mo (1‘ bé’) M : nonlinear elastic modulus

B : nonlinear coefficient
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Implications of nonlinear elasticity in ultrasonic testing
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Classical nonlinearity
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Amplitude of higher harmonics gives
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Shift in resonance frequency gives hysteretic nonlinearity

ATE NRus
>
o

<--—---
|
Af_ !
— — ¥ &nax :
fo |
|

16

M,

€ f
M A\ A f
/ A3f HA? 3f
—> HJ_)
€ f




Nonlinear Resonant Ultrasound Spectroscopy
(NRUS)



A larger hysteretic nonlinearity a is associated with more
“damage”

Sensitive to the presence of elongated, microscopic/closed defects




Could we measure to M vs strain directly?
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Outline

Tension phase: propagates slower

Principles: <
* Linear vs Nonlinear Wave propagation |« 7\1 s N
 How to measure nonlinear elasticity?

Compression phase: propagates faster

Dynamic Acousto-Elastic Testing (DAET):
e How to do DAET?
* Intact rock characterization
* Fractured rock’s response under in-situ stress and saturation

Outlook:
* New observations in granular media, Coupled X-ray CT and
DAET experiments
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Dynamic acousto-elastic testing (DAET) is a
‘oump’ and ‘probe’ approach
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There are other DAET test configurations ...

with surface wave probe with coda wave probe

Jinet al. JAP (2018) Shokouhi et al. Ultrasonics (2017)
Jin et al. JMPS (2020)
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DAET: Extract relative variations of pulse velocity and
attenuation under dynamic perturbation
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DAET: Extract relative variations of pulse velocity and
attenuation under dynamic perturbation

Renaud et al., JASA, 2011 ; Riviére et al, JAP, 2013



Typical DAET results (in rocks):
Berea sandstone at one pump strain amplitude

Relative veloeity change %{%)

l Transient Elasticé Softening /

Recovery

Microstrain
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Typical DAET results (in rocks):
Berea sandstone at multiple pump strain amplitudes
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What is the mechanism?

Multiple samples at
multiple amplitudes

4

Two clusters suggest
two main mechanisms
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Riviere, Shokouhi, Guyer & Johnson JGR (2015)




A study of frequency/rate dependence again
suggests two mechanism

!

Again, two main
mechanisms
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Riviere et al., Geophys. Res. Lett., 2016




Nonlinearity of intact rock decreases with increasing
normal stress

Riviere et al., Geophys. Res. Lett., 2016




Typical DAET response (in rocks) constitutes 6 regions:
focus on slow dynamics (6) Shokouh et al., APL (2017)
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The characteristic time
spelctrum does not change with
RH!

Shokoubhi et al., APL (2017)
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DAET under different stress and saturation conditions

Calibration Westerly Granite Sample Different Stress level

Steel Intact Fractured

Dry intact Dry fractured Saturated Fractured
34



Experimental Configuration

Biaxial Deformation Apparatus Piezoelectric
Transducers

L-shaped Westerly Granite Sample, sandwiched
between steel platens with embedded ultrasonic
transducers.

35



We study L-shape samples in a triaxial cell and a single-
direct shear configuration

ﬂShear stress

Biaxial loading apparatus

Normal stress ﬁ

Confining pressure



L-shaped Westerly Granite Sample is sandwiched between
steel platens with embedded ultrasonic transducers.

! !Shear stress

P.., Inlet pore pressure
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An ultrasonic array is used to monitor the stiffness of
the fractured rock under ‘effective’ stress oscillations

B
Po.out Outlet pore pressure



Calibration run: Westerly granite exhibits one order of
magnitude more nonlinearity than steel !
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Calibration run: Westerly granite exhibits one order of
magnitude more nonlinearity than steel !
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Experiment Protocol Overview

Dry intact-P5346 Dry fractured-P5356 Saturated Fractured-P5369

0.1Hz 1Hz 10Hz 1Hz

16 | 1MPa

Overview of imposed normal stress oscillations on the sample.

Manogharan et al., JMPS 2021 42
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We measure nonlinear elasticity in terms of ...

(1) Ac/cy - offset
(2) dc/cy- Amplitude change

(3) ¢ Recovery rate
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Relative velocity change ( Ac/c,) is largest for intact sample!
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Manogharan et al., JMPS 2021
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Relative velocity change ( Ac/cy) is largely frequency dependent!
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Manogharan et al., JMPS 2021
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Wave velocity modulation amplitude (dc/c,) shows similar trends to
(Ac/cy) but less frequency dependency and scatter

Manogharan et al., JMPS 2021
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Recovery of wave velocity follows a time logarithmic relaxation

Manogharan et al., JMPS 2021

Red line is the linear fit ¢ = p; log(t) + p,, to late-time recovery.
where p; and p, are the slope (recovery rate) and intercept.
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Recovery rate of wave velocity (slope p,) is generally in accord with
Ac/coand dc/c
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Why dry fractured sample exhibit less nonlinearity than intact

sample?
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Why saturated sample exhibits less nonlinearity than dry fractured
sample except at 10 MPa?
Actual contact area is less than 10% @10 MPa
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In-situ normal stress and saturation influences the measured

nonlinearity
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In-situ normal stress and saturation influences the measured
nonlinearity

On On On
Dry intact Dry fractured Saturated Fractured
Ac Y Ac
co | intact Co dry co Isaturated
sample fractured fractured

e Surprisingly, fractured sample exhibits low nonlinearity than intact sample
* Saturated sample shows less nonlinearity than the fractured sample except at 10 MPa.
* The three nonlinear parameters Ac/c,, dc/cy, p; behaves in a similar fashion.

* Fracture aperture and contact area play important roles in the observed trends at different

normal stress levels.
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Wrap-Up

Principles: Nonlinear vs linear

wave propagation: nonlinear ultrasonic (
propag ; :

testing (NRUS, SHG, DAET)

Compression phase: propagates faster

DAET: a comprehensive picture of
materials nonlinearity

used for intact rock characterization
as well as fractures/cracks

DAET on rock under in-situ
conditions: Stress and saturation Ac 5 Ac S Ac

. co | intact c dry cn |saturated
greatly influence the measured * sample ° fractured °“fractured

nonlinearity
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Outline

Tension phase: propagates slower

Principles: <
* Linear vs Nonlinear Wave propagation [« T\l s N
* How to measure nonlinear elasticity?

Compression phase: propagates faster

Dynamic Acousto-Elastic Testing (DAET):
e How to do DAET?
* Intact rock characterization
* Fractured rock’s response under in-situ stress and saturation

Outlook:
 New observations in granular media, Coupled X-ray CT and
DAET experiments
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We conduct DAET on samples of glass beads under
various RH conditions

Gao, Shokouhi, Riviere, JAP 2022
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Nonlinearity in glass beads increases with RH, but not in
sand ! — likely due to the differences in grain shape.

Gao, Shokouhi, Riviere, JAP 2022
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Coupled time-lapse x-ray CT and DAET experiments
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