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noise sources

Y

Ambient noise seismology ——

Noise - seismic waves emitted by
random ambient sources

Constructing virtual sismograms between 2 sensors ? includes also codla waves

although ballistic waves are
dominant in most cases

A mathematical argument: under specific conditions on the sources S of the ambient noise, the
correlation between records at 2 points P1 et P2 produces the Green function between the 2 points.

Im(G(P1, PZ; w)) = iw(G(S, P1; w). G(S, PZ; @) )sources s

< »

correlation

Im(G) represents the causal (t) and acausal (-t) contributions

-If the field has been fully randomized by multiple scattering

-If the ‘noise’ results from a uniform distribution of sources in the volume ( e.g. Y. Colin de
Verdiére)

-Approximations to representation theorems ( e.g. K. Wapenaar) = uniform sources on the
boundary

- Analogy with time reversal mirors (Derode et al., 2003).



Noise based seismic velocity temporal changes

Because seismic noise records is continuous in time, it is possible to reconstruct repeating
virtual seismic sources and perform continuous monitoring of seismic velocities, from the
beginning of the recording.
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Correlation functions as approximate Green functions
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Direct waves are sensitive to noise source distribution (errors small enough for
tomography)
Relative stability of the ‘coda’ of the noise correlations.

Importance of the analysis of the ambient noise structure



1- Reconstruction of direct waves from direct waves from distant sources "

Field data: Bias in the travel time due to

anisotropic intensity of noise field
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2-Reconstruction of direct waves from scattered waves

-isotropy improved by multiple scattering

Increasing anisotropy of the source intensity B
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From Froment, Campillo, Roux, Gouédard, Verdel and Weaver 2011.
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No visible bias in the
correlation of coda waves!



2-Reconstruction of direct waves from scattered waves®
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Noise records contain direct and scattered waves: the separation is usually impossible

=>» the biases of direct wave travel times are generally small enough for imaging purpose
=>» Importance of processing strategies: equalization, filtering, C3, ....



3-Reconstruction of coda waves a)
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Theoretical prediction
of the relative delay
for the direct wave in
an homogeneous
body (Froment et al.,
2010)

Colombi et al., 2014

Measure of the bias induced by a strong anisotropy

of the noise wave field

(delay with respect to the Green function)
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=» use of the coda of noise correlations
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Application to the Parkfield earthquake (Brenguier et al.
2008)
Short period sensors / Processing in the period 1-10s

Assumption 0: Homogeneous change of seismic velocity : constant slope of §t
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Do changes occur at depth ?

Evidence for shallow variations: known in soft sediments from seismic records
applications of continuous monitoring from noise

Evidences for deep changes:

SSE, Wenchuan

Japan after Tohoku

Direct observations at depth in a mine



Local scale: test with industrial noise

Velocity change due to blast and excavation in a mine

Sweden

Use of the strong industrial
noise in the mine.

Note the intense scattering
associated with the tunnels.

Olivier et al., 2014



Noise based monitoring: Velocity change due to blast and excavation in a mine (body waves)
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Slow dynamics : Relaxation-aging (e.g. Amir et al., 2011 ; Snieder et al., 2017)
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static stress
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Comparison of velocity changes and volumetric stress changes
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Frequency (depth) dependent spatial distribution of dv/v

Damage in the shallow crust
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Strain from deep crust From Wang et al., 2020



Frequency -depth- dependent temporal variation of dv/v
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Wang et al., 2020
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Coda=multiply scattered waves

Assumptions:

0: uniform change
1:uniform scattering properties
2: scalar waves

3: isotropic scattering



Assumption 0: Homogeneous change of seismic velocity : constant slope of 4t

== Medium with slower velocity
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Beyond assumption O : Localized change of seismic velocity / body waves

A
Finite size region at the surface
Extent of coda waves vt f——
Receiver/source
Lapse time t
a
Lapse time t

Actual meaning of the results under an homogeneous
distribution hypothesis ?



Linear formulation
ov
St(T.1;.1) == [ K(t,1,.10. 7)== (x) dV ()
A%
1%

The sensitivity kernel relates the travel time with a spatial distribution. It

can be calculated measuring the [time the particles pass in each zone of the
medium, when goingffrom the source to the receiver in a given time
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The detail of the subsurface are not known.

To perform differential imaging, we rely on statistical models of
heterogeneity and solutions of the Radiative Transfer Equation.



Kernels for travel time K;; (or amplitude K, (absorption) : passive perturbations

We made the assumption of isotropic scattering, but the field itself
is highly anisotropic for finite times
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Space-Time Monitoring of Groundwater Fluctuations via Passive Seismic Monitoring

Mao et al., 2022
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Maps of velocity changes using dv/V kernels
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Seismic fault imaging

Noise based tomography
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Scattering strength in the North Anatolian fault
region based on observed intensity
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Data and Monte Carlo simulations in media

with non-uniform scattering

=>» Existence of a narrow ( around 5 km) high scattering zone
along the Northern Branch of the NAF

(van Dinther et al, 2020)

Implications for monitoring/ sensitivity kernels?
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Numerical test : a velocity change in a section of the highly scattering North Anatolian fault

9 stations (noise correlations=sources and receivers)
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Kernels for medium where scattering properties are not uniform.
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Numerical test : a velocity change in a section of the highly scattering North Anatolian fault

9 stations (noise correlations=sources and receivers)
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Previous results on the coupling and sensitivity to a change in a thin flat layer

Numerical results of Obermann et al., 2016: full 3D elastic half space
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Scalar Wave Equation Model with Surface Waves

@ Helmholtz Eq. with mixed B.C. in 3-D Half-Space geometry (2 > 0)
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Transport Equation for coupled Surface and Body Waves
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Difference with Conventional Transport Equations
@ Depth-Dependent Scattering Mean Free Time

e Surface Wave wavelength is a parameter in the Eqgs



Local (2= 0) ., .
0 — Energy Partitioning
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Margerin, Barajas and Campillo (2019)



Probleme of a change in a flat layer. : the change depends only on depth

A phonon can propagate in two different modes, and can also arrive in two
possible modes. We therefore can keep track of four different time
densities

Es—)s; Es—)b; Eb—)»s; Eb—)b (10)

First index: Propagation mode. Second index: Arrival mode.

Sensitivity Entanglement

This means that, for example, a particle that arrived propagating in the
body wave mode could have been contributing to the sensitivity of the
surface waves
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Time partition coefficient for body waves
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Short conclusion
Measure of dt(t) with scattered waves ...

Importance of a good knowledge of the structure (velocity
AND scattering)...

Importance of including body to surface wave coupling in 3D
at least at a first order...



