Transport Models for Seismic Scattering

Second SPIN Workshop, Carcans, France

L. Margerin, S. Menina, N. Compaire, M. Celorio, A. Barajas, A. Delsuc, J. Marti, R. Garcia, M. Calvet, E. Chaljub, M. Campillo, T. Kawamura P. Lognonné, ...

Planetary Seismology: a variety of propagation regimes

Seismic Attenuation

Attenuation $Q^{-1} = C_{sc}^{-1} + Absorption Q_i^{-1}$

Small scale heterogeneities (a << L)

Faults / cracks

SCATTERING

ABSORPTION

Heterogeneity

Heterogeneity

Heterogeneity

(b) von Karman $\kappa = 1.0$

Sato et al, 2012

Multiple Scattering

- 2-D anti-plane geometry (SH)
- Slab of random material with exponential correlation
- Correlated fluctuations of density and velocity
- Periodic Boundary Conditions on the sides ullet
- Absorbing Boundary Conditions at Top and Bottom
- Numerical Solution with SpecFem2D

Coherent Field

Single Realisation

Celorio et al., in prep.

Ensemble Average

Mean Intensity $I = \langle u^2 \rangle$

Separation of Scattering and Absorption

Different scaling for coherent and incoherent intensity

« Multiple Lapse-Time Window Analysis » of Sato, Fehler and Hoshiba (1992, 1993)

eak a: oshiba

Seismic Events Reported by Mars Quake Service

LMST

Sunset

Clinton et al, 2021

Seismic Events Reported by Mars Quake Service

VF event (S0334a) observation

Time (s)

Menina et al., 2021

Iterative Linearised Inversion

Menina et al., 2021

Partial Derivatives of Envelopes

Inversion of 8 VF Events

Menina et al., 2021

Very High Q suggests propagation in a dry medium

Apparent attenuation decreases with hypocentral distance

-> Stratified Models

Detection of velocity changes in the lunar regolith

Green's Function Reconstruction from Ambient Vibrations

Ballistic Rayleigh Wave

Stehly, PhD thesis

Diffusion of Temperature in the Regolith

Tanimoto et al., 2008

Phase Delay Between Surface Temperature and Coda Delay Time

Rayleigh Wave Sensitivity Kernels

Evolving Waveforms of SF Events detected by InSight VBB

Compaire et al., 2022

Waveform changes seen in the frequency domain

Seasonal Variations of Seismic Velocities seen by SF Events

Velocity variations from ambient noise

Lander modes prohibit the use of the time-domain cross-correlation method

We track the 'band structure' in the frequency domain

Consistent pattern between SF events and ambient noise

The velocity change increases with frequency

One year of velocity variations observed by Mars InSight

!!! Positive **!!!** correlation between temperature and velocity

Delay is typically 100 days

Thermoelastic modeling

VOL. 80, NO. 2

A Note on Thermoelastic Strains and Tilts

Institute of Geophysics and Planetary Physics, University of California, San Diego La Jolla, California 92037

To make the link with seismic observations we assume the signal of SF events is dominated by Rayleigh waves with Cs=100m/s and nu=0.2

JON BERGER

$$\frac{v}{2}(x, z, t) = -2\alpha b \frac{\partial \rho v^2}{\partial \sigma} \sum_{\omega} T_{\omega} \cos(k_x x) \left[\cos(\omega t + \phi_{\omega} - \gamma z)e \frac{(1+\nu)}{\sqrt{2\gamma^2 + 2\gamma k_x + k_x^2}} \cos(\omega t + \phi_{\omega} - \psi)k_x e^{-k_x z} \right],$$

$$\tan \psi = \frac{\gamma}{\gamma + k_x} \quad \text{with } \psi \in [0, \pi/2[$$

 $-\gamma z$

Comparison between thermo-elastic model and data

- Delay with surface temperature is a bit too small
- General asymmetry is well reproduced
- Sharp contrast with lunar observations
- Frequency dependence not OK

Compaire et al., 2022

->Body wave/ surface wave partition?

Phenomenological Transport Model for coupled surface/body waves in a half-space

$$\frac{\partial}{\partial t} + \frac{1}{\tau^{s \to s}} \int_{2\pi} p^{s \to s}(\widehat{\mathbf{n}}, \widehat{\mathbf{n}}') e_s(t, \mathbf{r}, z, \widehat{\mathbf{n}}') d\widehat{n}'$$

$$\frac{\partial}{\partial t} \int_{4\pi} p^{b \to s}(\widehat{\mathbf{n}}, \widehat{\mathbf{k}}') e_b(t, \mathbf{r}, z, \widehat{\mathbf{k}}') d\widehat{k}' + s_s(t, \mathbf{r}, z, \widehat{\mathbf{n}})$$

$$\frac{\partial}{\partial t} + \frac{1}{\tau^{b \to b}} \int_{4\pi} p^{b \to b}(\widehat{\mathbf{k}}, \widehat{\mathbf{k}}') e_b(t, \mathbf{r}, z, \widehat{\mathbf{k}}') d\widehat{k}'$$

$$p^{s \to b}(\widehat{\mathbf{k}}, \widehat{\mathbf{n}}') e_s(t, \mathbf{r}, z, \widehat{\mathbf{n}}') d\widehat{n}' + s_b(t, \mathbf{r}, z, \widehat{\mathbf{n}})$$

B.C. : $e_b(t, \mathbf{r}, 0, \mathbf{k}_i) = e_b(t, \mathbf{r}, 0, \mathbf{k}_r)$

Margerin, Barajas & Campillo, 2019

Equipartition between Surface and Body Waves Uniformly scattering half-space

Monte-Carlo Simulations

Energy Envelopes in Time Domain

Surface Waves

Body Waves

Delay Time Sensitivity Kernels

Barajas et al., 2022