Turning seismometers into strainmeters using tidal strain and ambient noise – a feasibility study Jozef Müller, Tom Eulenfeld and Ulrich Wegler ## Motivation ## **Properties of local subsurface** Of seismic stations have significant influence on seismic recordings ## **Knowledge of elastic properties** Of rocks in the subsurface would enable better station calibration for effects of local geology and allow to concentrate more on actual earthquake signals # Tidal strain and ambient noise (trivia) ## **Solid Earth tides (SET)** - Nanostrain deformations - Tools for synthetics of SET-induced strains #### **Ambient noise** - Omnipresent - Easily collectible ## However... ## **Solid Earth tides (SET)** - Oceanic loading tides (OLT) also exist - Estimates are less accurate #### **Ambient noise** - Noise level might not be sufficient - Noise sources can change their x and/or f over time - (Tidal-like) oceanic noise, also > 1 Hz # Theoretical concept ## Tidal loading of the Moon and Sun Deforms the Earth's surface (can be estimated theoretically) E.g., Sens-Schönfelder and Eulenfeld (2019) #### Earth's surface Responses to the deformations with volumetric changes of its pores ## The volumetric changes Induce velocity changes of propagating seismic waves ## **Such velocity changes** In subsurface of seismic stations can be determined by ambient noise processing ## Knowledge of such tidal strains and induced velocity changes Would enable to estimate elastic properties in the station's subsurface ## Method ## Passive image interferometry ("stretching method") Preprocess continous waveforms \rightarrow correlate short segments \rightarrow reference trace \rightarrow stretch the segments to match the reference trace \rightarrow time series of relative velocity changes (DVV) By Sens-Schönfelder and Wegler (2006) ## Method ## Passive image interferometry ("stretching method") Preprocess continous waveforms \rightarrow correlate short segments \rightarrow reference trace \rightarrow stretch the segments to match the reference trace \rightarrow time series of relative velocity changes (DVV) By Sens-Schönfelder and Wegler (2006) ## Find tidal frequency components In the retrieved DVV time series #### **Calculate theoretical SET-induced strains** And study rock elastic properties thanks to the DVVs and SETs # My real-world results (very briefly) #### **Data from dozens of stations** Were processed (varying freqs., lapse times...) ## **Tidal frequencies in DVV time series** Were observed only at stations not further than 65 km away from an ocean/sea #### Phases of tide-related frequencies Were inspected for DVV time series and synthetic SET, OLT and SET+OLT time series, without clear relationships, suggesting complex conditions ## Conclusions ## **Unfeasibility to observe tidal frequencies** In DVV time series at mainland stations raises questions about plausibility of tide-related DVV changes observed at the coastal stations ## Tidal frequencies observed near the coast Might might be a combination of real DVVs caused by SET and OLT, with contribution of noise source effects, although a sound proof is still missing ## References **Sens-Schönfelder, C. and Eulenfeld, T.,** 2019. Probing the in situ elastic nonlinearity of rocks with Earth tides and seismic noise, Phys. Rev. Lett., 122, 138501 **Sens-Schönfelder, C. and Wegler, U.,** 2006. Passive image interferometry and seasonal variations of seismic velocities at Merapi volcano, Indonesia, Geophys. Res. Lett., 33, L21302 Thank you for your attention Suggestions are welcome