Field Observations of Material Changes in the Shallow Subsurface

Christoph Sens-Schönfelder

GFZ German Research Centre for Geosciences, Potsdam, Germany

SPIN Workshop, 05/26/2022

Contents

Part I: Coda wave sensitivity in the presence of variable heterogeneity (work by Tuo Zhang)

Part I: Field observations of velocity changes

Part II: Hydrology and Earthquake Damage (work by Luc Illien)

Contents

Part I: Coda wave sensitivity in the presence of variable heterogeneity (work by Tuo Zhang)

Part I: Field observations of velocity changes

Part II: Hydrology and Earthquake Damage (work by Luc Illien)

Recap: Radiative transfer Theory

- describes flux of energy in the medium resolved for directions
- ▶ total intensity can be measured as seismogram envelope

S-energy from P-source

[Zhang et al., 2021]

Recap: Radiative transfer Theory

- describes flux of energy in the medium resolved for directions
- ▶ total intensity can be measured as seismogram envelope

S-energy from P-source

[Zhang et al., 2021]

Sensitivity of coda waves to detect changes

[Zhang et al., 2021]

Sensitivity of coda waves to detect changes

[Zhang et al., 2021]

Contents

Part I: Coda wave sensitivity in the presence of variable heterogeneity (work by Tuo Zhang)

Part I: Field observations of velocity changes

Part II: Hydrology and Earthquake Damage (work by Luc Illien

Influence of fluids in Germany

Influence of fluids in Germany

Reservoir with CO₂ injection

[Lüth et al., 2017]

Influence of fluids in Germany

Reservoir with CO₂ injection

Ground water level and frost

[Lüth et al., 2017]

Karst aquifer in southern Italy

Karst aquifer in southern Italy

[Barajas et al., 2021]

- dv/v quite well explained by hydrology
- aquifer inflation also observed as horizontal deformation by GPS
- ▶ but: difference between dv/v and water level model is systematic

[Barajas et al., 2021]

mismatch between dv/v and GWL model correlates

- with precipitation
- with vertical surface displacement
- $\Rightarrow \ \mathsf{loading} \ \mathsf{effect}$

[Barajas et al., 2021]

Drought in California

San Gabriel Valley in California

Drought in California

San Gabriel Valley in California

[Clements and Denolle, 2018]

- sinusoidal effect of thermoelastic stress
- ► changes of the GW level

Wave velocity changes in a dry environment

Wave velocity changes in a dry environment

Apollo 17 landing site

Wave velocity changes in a dry environment

[Sens-Schönfelder and Larose, 2008]

Station Patache in the Atacama desert

 $ightharpoonup S_1$ diurnal temperature changes

- ► M₂ (principal lunar semidiurnal) dominates the 2 cpd peak
- ▶ N₂ (larger lunar elliptic semidiurnal) clearly detected
- $ightharpoonup S_2$ (principal solar semidiurnal) is under-predicted by tide

[Sens-Schönfelder and Eulenfeld, 2019]

Active seismic observations of tidal deformation

- dedicated facility with a piezoelectric source and receiver
- stacks of 16.000 pules every 20 min
- ▶ 1 year of observation

[Yamamura et al., 2003]

Active seismic observations of tidal deformation

Active seismic observations of tidal deformation

- observed tidal consituents:
- $ightharpoonup O_1, K_1, M_2, S_2, M_3, M_4$

[Yamamura et al., 2003]

◆ロト ◆問 ト ◆ 臣 ト ◆ 臣 ・ 夕 Q ○ ○

Material Damage in the near surface material

Change of velocity during excitation

[Nakata and Snieder, 2011]

Damage and healing of a dam

Damage and healing of a dam

Ichiro Kuroda, pers. comm.

Damage and healing of a dam

Ichiro Kuroda, pers. comm.

Material damage and healing in the field

Station Patache in the Atacama desert

Material damage and healing in the field

Station Patache in the Atacama desert

[Gassenmeier et al., 2016]

Material damage and healing in the field

model of transient variations with:

- steps that scale with acceleration (shaking)
- exponential decy

[Gassenmeier et al., 2016]

Material damage and healing in the field

Damage and healing – a wide-spread observation

Parkfield earthquake 2004

[Wu et al., 2016]

Damage and healing – a wide-spread observation

Different events and locations in Japan

Damage and healing – a wide-spread observation

Different events and locations in Japan

[Hobiger et al., 2016]

Summary Part I

Interferometry

- ambient noise or repeated sources allow to monitor variations of wave velocities in the field
- \triangleright can reach resolution of one hour and precision of 10^{-5}

Observations

- observe rich behavior of velocity due to
 - environmental changes (water temperature)
 - transient deformation (damage)
 - time (healing)

Contents

Part I: Coda wave sensitivity in the presence of variable heterogeneity (work by Tuo Zhang)

Part I: Field observations of velocity changes

Part II: Hydrology and Earthquake Damage (work by Luc Illien)

Post-seismic variation of hydrological properties

Luc Illien, Christoph Sens-Schönfelder, Odin Marc Christoff Andermann, Kristen L. Cook and Niels Hovius

Non-linear elasticity and seismic interferometry

'Damage' phase

Recovery phase: 'relaxation' or 'slow dynamics'

NLE arises from the defects in the rocks (grain boundaries, cracks, fractures, soft spots etc...) that recover towards a new equilibrium state.

Transient observations after earthquakes

Increased rates of landslides

Increased permeability in boreholes

Increased river discharge

+ many others ...

Modelling velocity changes, the classic way

Empirical approach to fit the recovery:

$$\delta v(t) = \delta v_0 \exp\left[\frac{-t}{\tau}\right] + C$$

Linear summation of both effects:

$$\delta v = \delta v_{hydro} + \delta v_{damage}$$

Modelling velocity changes, the classic way

Empirical approach to fit the recovery:

$$\delta v(t) = \delta v_0 \exp\left[\frac{-t}{\tau}\right] + C$$

Linear summation of both effects:

$$\delta v = \delta v_{hydro} + \delta v_{damage}$$

riosiger et al, 201

These effects should influence each other!

Question:

Can we track co-seismic perturbations of the hydrological properties after earthquakes from seismic interferometry?

What we need:

- → seismic velocity dataset with
 - a large earthquake
 - hydrological changes
- → a consistent approach to describe the relaxation phenomena in the field
- → g good hydrological model

Complexity in the field:

→ aftershock perturbations during the recovery time

Roadmap

- Why Nepal?
- Data and Geophysical Setting
- Methods for retrieving Seismic Velocity Changes
- Results dv/v evolution
- Modelling Section
 - → Correcting for Damage
 - → Correcting for Hydrological variations
- Conclusions

Wet season induced by the monsoon → ~80% of annual precipitation from June to September **Pictures: Kristen Cook**

Data and Geophysical setting

- 3 broadband stations at the Chaku site
 (~ 50m interstation distance) for
 temporal averaging

Ambient noise correlations

- Correlation functions calculated at a hourly time step (4-8Hz).
- Stack every 24h → Daily Correlation Function
- Consider time window from 1s 4s lapse time

dv/v_{hydro}: hydrological model

Results

Concept

First iteration:

- Estimate the velocity changes caused by Gorkha and its aftershocks.
- Create a hydrological model for the unperturbed behaviour

Second iteration:

- Compute the residuals after damage correction and compare them with the calibrated hydrological model
- Modify the hydrological model with a transient parameter?

soil moisture acts as gatekeeper for ground water

- recharge
- transpiration

soil moisture acts as gatekeeper for ground water

- recharge
- transpiration

soil moisture acts as gatekeeper for ground water

- recharge
- transpiration

soil moisture acts as gatekeeper for ground water

- recharge
- transpiration

soil moisture acts as gatekeeper for ground water

- recharge
- transpiration

profound consequences for water supply: 800 million people in the Indus, Ganges, and Brahmaputra basins.

Seismic velocity scales with the groundwater depth represented by the hydraulic head *h*:

$$\frac{dh}{dt}(t) = -a_{ss}h(t) + \text{additional terms}$$

Therefore, the parameter a_{ss} is a proxy for the hydraulic conductivity of the reservoir

Strong Annual Cycle

Strong Annual Cycle

Modulated by monsoon seasons

What about the long-term recovery triggered by Gorkha earthquake?

Results dv/v_{damage}: damage model for 4 monsoon seasons

Concept

First iteration:

- Estimate the velocity changes caused by Gorkha and its aftershocks.
- Create a hydrological model for the unperturbed behaviour

Second iteration:

- Compute the residuals after damage correction and compare them with the calibrated hydrological model
- Modify the hydrological model with a transient parameter?

dv/v following some aftershocks

Correcting for damage: classic approach

First let's get rid of aftershocks!

$$\delta v(t) = \delta v_0 \exp\left[\frac{-t}{\tau}\right] + C$$

Using this approach: relaxation timescale after aftershocks in between ~ 1.2 to 3 days

Correcting for damage: classic approach

We compute synthetics from the two measured end-members recovery timescales

Correcting for damage: classic approach

Aftershocks may induce longer relaxations that are not captured by this approach. Fitting of the Gorkha relaxation but we don't have the early part! Alternative approach?

$$\delta v(t) = \delta v_{ss} + sR(t-t_0)$$

$$R(t) = \int_{\tau_{min}}^{\tau_{max}} \frac{1}{\tau} e^{-(t-t_0)/\tau} d\tau.$$
 Snieder et al. (2017)

- Scaling with a universal relaxation function
- Superposition of exponential processes processes that are distributed between a minimum and a maximum timescales → follows a log(t) evolution
- **Assumption in this study**: all events will trigger the same timescales, only the amplitude s will change.

Relaxation function sensitivity

$$R(t) = \int_{\tau_{min}}^{\tau_{max}} \frac{1}{\tau} e^{-(t-t_0)/\tau} d\tau$$

 \rightarrow Let's use the early dynamics after the aftershocks to calibrate the maximum relaxation timescale

Joint fitting of the first 24h Converge to ~Tmax = 155d

We create 3 models in combining different measurements

New correction for aftershocks:

Model with constant Tau_{max}:

→ Let's keep these 3 models for the following

Concept

First iteration:

- Estimate the velocity changes caused by Gorkha and its aftershocks.
- Create a hydrological model for the unperturbed behaviour

Second iteration:

- Compute the residuals after damage correction and compare them with the calibrated hydrological model
- Modify the hydrological model with a transient parameter?

Correcting for Hydrology: Using a constant value for a_{ss}

visual agreement between the residuals from the 3 relaxation models and hydrological model

- too much groundwater storage is predicted in 2015
- introduce transient drainage parameter:

$$a(t) = a_{ss} + (Ca_{ss}) \exp \left[\frac{-(t - t_{Gorkha})}{\tau_{hydro}}\right].$$

Correcting for Hydrology: introducing drainage perturbation

$$a(t) = a_{ss} + (Ca_{ss}) \exp \left[\frac{-(t - t_{Gorkha})}{\tau_{hudro}} \right]$$

Correcting for Hydrology: best model? Significance?

Independant data? Less variability in river discharge in 2015. Coseismic uptick of discharge.

Correcting for Hydrology: best model? Significance?

Independent data? Less variability in river discharge in 2015. Coseismic uptick of

Conclusions

- Huge coseismic and environmental changes
- Most of the NLME effect relaxed in the first year after Gorkha following our analysis.
 - → This is in agreement with observed landslide rates (normal in 2016).
- Mainshock and aftershock relaxation can be described with a consistent model and a single relaxation time.
- Hydrological model reveals importance of soil as gatekeeper for GW recharge
- Significant coseismic perturbation of the hydrological system can be monitored with seismic interferometry
- Considering linear superposition of forcing may 'hide' informations