Simulation of Translational and Rotational ground motions

A Short Presentation

Presented by Anjali Dhabu

Post-doctoral Research Associate Institute of Geophysics University of Hamburg, Germany

May 27, 2022

- The characteristics of seismic waves depend on:
 - Earthquake source
 - Medium of wave propagation
 - Boundary conditions

- The characteristics of seismic waves depend on:
 - Earthquake source
 - Medium of wave propagation
 - Boundary conditions
- My work addresses the modelling aspect of all these three factors.

- The characteristics of seismic waves depend on:
 - Earthquake source
 - e Medium of wave propagation
 - Boundary conditions
- My work addresses the modelling aspect of all these three factors.
- Earthquake source

- The characteristics of seismic waves depend on:
 - Earthquake source
 - e Medium of wave propagation
 - Boundary conditions
- My work addresses the modelling aspect of all these three factors.
- Earthquake source
 - Seismic sources are represented as rectangular regions with slip distributed over the surface of the fault plane

Tohoku (2011) source model

- The characteristics of seismic waves depend on:
 - Earthquake source
 - e Medium of wave propagation
 - Boundary conditions
- My work addresses the modelling aspect of all these three factors.
- Earthquake source
 - Seismic sources are represented as rectangular regions with slip distributed over the surface of the fault plane
 - Extreme slips are observed near the hypocenter and are responsible for the peak amplitude observed in simulated ground motions

Asperities in literature (Mai et al., (2005))

• Effective Dimensions

 Effective slip dimensions are defined such that, each sub-fault of the effective slip contributes to 90% of total cumulative energy

• Effective Dimensions

 Effective slip dimensions are defined such that, each sub-fault of the effective slip contributes to 90% of total cumulative energy

- Regions of Strong Motion Generation
 - Q-Q plot shows that higher values of slip tend to deviate from standard exponential distribution.

Q-Q plot for 1991 Sierra Madre earthquake

• Effective Dimensions

 Effective slip dimensions are defined such that, each sub-fault of the effective slip contributes to 90% of total cumulative energy

- Regions of Strong Motion Generation
 - Q-Q plot shows that higher values of slip tend to deviate from standard exponential distribution.

SPIN MONTORINA A PRETIESSE RAPPA

• Effective Dimensions

 Effective slip dimensions are defined such that, each sub-fault of the effective slip contributes to 90% of total cumulative energy

- Regions of Strong Motion Generation
 - Q-Q plot shows that higher values of slip tend to deviate from standard exponential distribution.
 - Finally, we get the regions of SMG

• For a given rupture model, effective dimensions and regions of SMG are calculated

- For a given rupture model, effective dimensions and regions of SMG are calculated
- A total of 159 rupture models are analyzed

- For a given rupture model, effective dimensions and regions of SMG are calculated
- A total of 159 rupture models are analyzed
- Regression analysis is carried out to estimate rupture parameters viz.

- For a given rupture model, effective dimensions and regions of SMG are calculated
- A total of 159 rupture models are analyzed
 - Regression analysis is carried out to estimate rupture parameters viz.
 - Effective length
 - effective width
 - In Effective area
 - Mean effective slip

- For a given rupture model, effective dimensions and regions of SMG are calculated
- A total of 159 rupture models are analyzed
 - Regression analysis is carried out to estimate rupture parameters viz.
 - Effective length
 - effective width
 - In Effective area
 - Mean effective slip
 - Threshold slip
 - Area of SMG

- For a given rupture model, effective dimensions and regions of SMG are calculated
- A total of 159 rupture models are analyzed
- Regression analysis is carried out to estimate rupture parameters viz.
 - Effective length
 - effective width
 - In Effective area
 - Mean effective slip
 - Threshold slip
 - Area of SMG
- These equations can be used to predict the rupture parameters for future earthquake
- DOI: 10.1007/s00024-019-02136-0

• The equations of motion for reduced micropolar half space (RMP) are:

$$c_1^2 \nabla \nabla \bullet \vec{u} - c_2^2 \nabla \times \nabla \times \vec{u} + \frac{j w_0^2}{2} \nabla \times \vec{\Theta} - \vec{u} = 0$$

$$\frac{w_0^2}{2}\nabla\times\vec{u}+w_0^2\vec{\Theta}-\vec{\ddot{\Theta}}=0$$

$$c_1^2 = rac{\lambda + \mu + \kappa}{
ho}, c_2^2 = rac{\mu + \kappa}{
ho}, w_0^2 = rac{2\kappa}{
ho j}$$

- λ is Lame's constant
- μ is Eringen's shear modulus
- κ describes the microstructure of the medium
- j is the rotational inertia of the medium

• The equations of motion for reduced micropolar half space (RMP) are:

$$c_1^2 \nabla \nabla \bullet \vec{u} - c_2^2 \nabla \times \nabla \times \vec{u} + \frac{j w_0^2}{2} \nabla \times \vec{\Theta} - \vec{u} = 0$$

$$\frac{w_0^2}{2}\nabla\times\vec{u}+w_0^2\vec{\Theta}-\vec{\ddot{\Theta}}=0$$

$$c_1^2 = rac{\lambda + \mu + \kappa}{
ho}, c_2^2 = rac{\mu + \kappa}{
ho}, w_0^2 = rac{2\kappa}{
ho j}$$

- λ is Lame's constant
- μ is Eringen's shear modulus
- κ describes the microstructure of the medium
- j is the rotational inertia of the medium

Elastic half-space

$$egin{aligned} c_1^2
abla
abla & oldsymbol{i} - c_2^2
abla imes
abla imes oldsymbol{i} - oldsymbol{i} = \mathbf{0} \ c_1^2 &= rac{\lambda + \mu}{
ho}, c_2^2 = rac{\mu}{
ho} \end{aligned}$$

• The equations of motion for reduced micropolar half space (RMP) are:

$$c_1^2 \nabla \nabla \bullet \vec{u} - c_2^2 \nabla \times \nabla \times \vec{u} + \frac{j w_0^2}{2} \nabla \times \vec{\Theta} - \vec{u} = 0$$

$$\frac{w_0^2}{2}\nabla\times\vec{u}+w_0^2\vec{\Theta}-\vec{\ddot{\Theta}}=0$$

$$c_1^2 = rac{\lambda + \mu + \kappa}{
ho}, c_2^2 = rac{\mu + \kappa}{
ho}, w_0^2 = rac{2\kappa}{
ho j}$$

- λ is Lame's constant
- μ is Eringen's shear modulus
- κ describes the microstructure of the medium
- j is the rotational inertia of the medium

Elastic half-space

$$\begin{split} c_1^2 \nabla \nabla \bullet \vec{u} - c_2^2 \nabla \times \nabla \times \vec{u} - \vec{u} &= 0 \\ c_1^2 &= \frac{\lambda + \mu}{\rho}, c_2^2 &= \frac{\mu}{\rho} \end{split}$$

10.1007/s10950-021-09983-2

Medium of wave propagation Layered Reduced Micropolar half-space

• Now, the Earth medium is modelled as layered RMP half-space subjected to earthquake forces.

Medium of wave propagation Layered Reduced Micropolar half-space

- Now, the Earth medium is modelled as layered RMP half-space subjected to earthquake forces.
- The methodology is first validated with the simulations for a classical elastic medium.

Medium of Wave Propagation Layered Reduced Micropolar half-space

• For $6M_w$ 2012 Wutai, Taiwan earthquake with focal depth of 26.3km and radial distance 161km

SPI

Medium of Wave Propagation Layered Reduced Micropolar half-space

• For $6M_w$ 2012 Wutai, Taiwan earthquake with focal depth of 26.3km and radial distance 161km

SPIN

- The simulated peak rotation about vertical axis ($5.5 \times 10^{-5} rad/s$) is in close match with the recorded peak rotation of $5 \times 10^{-5} rad/s$
- Published in: JGR: Solid Earth (DOI: 10.1029/2020JB020931)

- What will be the effect of 3D Himalayan topography subjected to P, SV and SH waves together??
- It is difficult to incorporate complex topography like the Himalayas in analytical simulation approaches

Past earthquakes in northern India

- What will be the effect of 3D Himalayan topography subjected to P, SV and SH waves together??
- It is difficult to incorporate complex topography like the Himalayas in analytical simulation approaches
- Therefore, a 3D finite element model is developed of a region in central seismic gap of the Himalayas.

- What will be the effect of 3D Himalayan topography subjected to P, SV and SH waves together??
- It is difficult to incorporate complex topography like the Himalayas in analytical simulation approaches
- Therefore, a 3D finite element model is developed of a region in central seismic gap of the Himalayas.
- The region under consideration consists of both the Himalayas and the Indo-Ganga basin
- The model incorporates topography and three dimensional material properties for the Himalayas and the Indo-Ganga basin

• The developed model is validated with the recorded data for two past earthquakes (Chamoli and Uttarkashi)

- The developed model is validated with the recorded data for two past earthquakes (Chamoli and Uttarkashi)
- Ground motions are simulated for 8.5*M*_w hypothetical earthquake and amplifications are calculated

- The developed model is validated with the recorded data for two past earthquakes (Chamoli and Uttarkashi)
- Ground motions are simulated for $8.5M_w$ hypothetical earthquake and amplifications are calculated
- Amplification is defined as the PGD or PGV obtained at station when topography is considered to the PGD or PGV at the same station when topography is not considered

- The developed model is validated with the recorded data for two past earthquakes (Chamoli and Uttarkashi)
- Ground motions are simulated for 8.5*M*_w hypothetical earthquake and amplifications are calculated
- Amplification is defined as the PGD or PGV obtained at station when topography is considered to the PGD or PGV at the same station when topography is not considered
- Amplification observed in the horizontal and vertical direction for
 - Ground displacement

Vertical direction

- The developed model is validated with the recorded data for two past earthquakes (Chamoli and Uttarkashi)
- Ground motions are simulated for 8.5*M*_w hypothetical earthquake and amplifications are calculated
- Amplification is defined as the PGD or PGV obtained at station when topography is considered to the PGD or PGV at the same station when topography is not considered
- Amplification observed in the horizontal and vertical direction for
 - Ground displacement
 - Ground velocity
- Regression analysis is carried out to determine the variation of these amplification ratios wrt to elevation.

• Published in: AJGS

• Planetary explorations have shown seismic activities on Mars and Moon.

SPIN

Ground motion recorded on Moon

- Planetary explorations have shown seismic activities on Mars and Moon.
- In the absence of recorded data, seismic activity is understood by the overturning of boulders when subjected to ground motions

Boulder trails marked on Satellite images (Kumar et al., (2016))

- Planetary explorations have shown seismic activities on Mars and Moon.
- In the absence of recorded data, seismic activity is understood by the overturning of boulders when subjected to ground motions
- By static analysis, the minimum PGA required to topple a body is equal to its aspect ratio *B*/*H*

Boulder trails marked on Satellite images (Kumar et al., (2016))

- Planetary explorations have shown seismic activities on Mars and Moon.
- In the absence of recorded data, seismic activity is understood by the overturning of boulders when subjected to ground motions
- By static analysis, the minimum PGA required to topple a body is equal to its aspect ratio *B*/*H*
- On Mars, high frequency ground motions are simulated using stochastic seismological model to:
 - estimate PGA
 - the radius upto which boulder toppling can be encountered

- Planetary explorations have shown seismic activities on Mars and Moon.
- In the absence of recorded data, seismic activity is understood by the overturning of boulders when subjected to ground motions
- By static analysis, the minimum PGA required to topple a body is equal to its aspect ratio *B*/*H*
- On Mars, high frequency ground motions are simulated using stochastic seismological model to:
 - estimate PGA
 - the radius upto which boulder toppling can be encountered
- However, in dynamic analysis, rocking of a body is governed by:

Equations

$$\begin{split} \ddot{\Theta} &- \rho^2 \left(1 + \frac{a_z\left(t\right)}{g} \right) \left(\Theta_c + \Theta\right) = -\rho^2 \left(\frac{a_x\left(t\right)}{g} \right) \\ \ddot{\Theta} &+ \rho^2 \left(1 + \frac{a_z\left(t\right)}{g} \right) \left(\Theta_c - \Theta\right) = -\rho^2 \left(\frac{a_x\left(t\right)}{g} \right) \\ \Theta_c &= \cot^{-1}\frac{H}{B} \text{ and } \rho^2 = \frac{Wg}{I_0} \end{split}$$

- Planetary explorations have shown seismic activities on Mars and Moon.
- In the absence of recorded data, seismic activity is understood by the overturning of boulders when subjected to ground motions
- By static analysis, the minimum PGA required to topple a body is equal to its aspect ratio *B*/*H*
- On Mars, high frequency ground motions are simulated using stochastic seismological model to:
 - estimate PGA
 - the radius upto which boulder toppling can be encountered
- However, in dynamic analysis, rocking of a body is governed by:

Equations

$$\begin{split} \ddot{\Theta} &- \rho^2 \left(1 + \frac{a_z(t)}{g} \right) (\Theta_c + \Theta) = -\rho^2 \left(\frac{a_x(t)}{g} \right) \\ \ddot{\Theta} &+ \rho^2 \left(1 + \frac{a_z(t)}{g} \right) (\Theta_c - \Theta) = -\rho^2 \left(\frac{a_x(t)}{g} \right) \\ &\Theta_c = \cot^{-1} \frac{H}{B} \text{ and } \rho^2 = \frac{W_{fg}}{I_0} \end{split}$$

 So, on Moon, ground motions are simulated and dynamic analysis for boulder toppling is carried out

• Shortcomings of stochastic seismological model

- Shortcomings of stochastic seismological model
- Therefore, in the next step 3D globe model of Mars (Bozdag et al., (2017)) is used that consists of

Globe model of Mars

- Shortcomings of stochastic seismological model
- Therefore, in the next step 3D globe model of Mars (Bozdag et al., (2017)) is used that consists of

Globe model of Mars

- Shortcomings of stochastic seismological model
- Therefore, in the next step 3D globe model of Mars (Bozdag et al., (2017)) is used that consists of

Globe model of Mars

- The developed finite element model incorporates
 - topography
 - ② 3D material properties
 - Multiple orbit waves

- Shortcomings of stochastic seismological model
- Therefore, in the next step 3D globe model of Mars (Bozdag et al., (2017)) is used that consists of
- The developed finite element model incorporates
 - topography
 - ② 3D material properties
 - Implement of the second sec
- Published in EPSL and GRL

Conclusions

SEISMIC SOURCE

Extreme value theory provides better estimate to determine regions of SMG

Conclusions

SEISMIC SOURCE

Extreme value theory provides better estimate to determine regions of SMG

• MEDIUM OF WAVE PROPAGATION

Can we explore reduced micropolar theory further to explore it's applications in the field of seismology?

Conclusions

SEISMIC SOURCE

Extreme value theory provides better estimate to determine regions of SMG

• MEDIUM OF WAVE PROPAGATION

Can we explore reduced micropolar theory further to explore it's applications in the field of seismology?

COMPLEX TOPOGRAPHY

 Ground displacements and velocities are amplified due to the presence of Himalayan topography. So, it is important to consider the topography of a region to obtain ground motions

Thank you for your attention!

Questions??

Contact:

Anjali Dhabu

Geomatikum, 1329,

University of Hamburg, Germany anjali.dhabu@uni-hamburg.de.com

